Preview

Регенерация органов и тканей

Advanced search

Prospects for the use of CAR-T-cell therapy in breast cancer: A look into the future

https://doi.org/10.60043/2949-5938-2024-2-10-23

Abstract

Cellular immunotherapy CAR-T (Chimeric Antigen Receptor T-Cell, or T-cells with a chimeric antigen receptor) is an advanced approach to the treatment of oncological diseases. Currently, CAR-Ttherapy has shown high efficiency in the treatment of oncohematological diseases. At the same time, numerous attempts to create CAR-T-constructs for the treatment of solid tumors, in particular breast cancer (BC), have not demonstrated significant clinical efficacy. It is assumed that the key to solving these problems lies in the development and implementation of new genetic engineering strategies.
The purpose of this review was to summarize and systematize existing studies with CAR technology. In this paper, we summarize potential targets for the treatment of BC, detail the existing limitations of using these technologies and identify important future trends in this area.

About the Authors

L. E. Sorokina
Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia
Russian Federation

Leya E. Sorokina - Junior Researcher at the Cytology Laboratory

Moscow



A. L. Nezlina
Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia
Russian Federation

Alexandra L. Nezlina - Junior Researcher at the Cytology Laboratory

Moscow



A. M. Krasnyi
Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia
Russian Federation

Aleksey M. Krasnyi - Cand. Sci. (Biology), Head of the Cytology Laboratory

Moscow



G. T. Sukhikh
Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia
Russian Federation

Gennady T. Sukhikh - Academician of the RAS, Dr. Sci. (Medicine), Professor, Director

Moscow



References

1. Рак молочной железы. https://www.who.int/ru/news-room/fact-sheets/detail/breast-cancer

2. Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2024;74(3):229–263. DOI: 10.3322/caac.21834

3. Caswell-Jin JL, Lorenz C, Curtis C. Molecular heterogeneity and evolution in breast cancer. Ann Rev Cancer Biol. 2021;5(1):79–94. DOI: 10.1146/annurev-cancerbio-060220- 014137

4. Harbeck N, Gnant M. Breast cancer. Lancet. 2017;389(10074):1134–1150. DOI: 10.1016/S0140-6736(16)31891-8

5. Barzaman K, Karami J, Zarei Z, Hosseinzadeh A, Kazemi MH, Moradi-Kalbolandi S. et al. Breast cancer: Biology, biomarkers, and treatments. Int Immunopharmacol. 2020;84:106535.

6. Palomeras S, Ruiz-Martínez S, Puig T. Targeting Breast Cancer Stem Cells to Overcome Treatment Resistance. Molecules. 2018;23(9):2193. DOI: 10.3390/molecules23092193

7. Anuvab D, Subhrojyoti G, Shreya J, et al. Recent advancement in breast cancer treatment using CAR T cell therapy:-A review. 2023;7:100090. DOI: 10.1016/j.adcanc.2023.100090

8. Ciarka A, Piątek M, Pęksa R, Kunc M, Senkus E. Tumor-Infiltrating Lymphocytes (TILs) in Breast Cancer: Prognostic and Predictive Significance across Molecular Subtypes. Biomedicines. 2024;12(4):763. DOI: 10.3390/biomedicines12040763

9. Denkert C, Loibl S, Noske A, et al. Tumor-associated lymphocytes as an independent predictor of response to neoadjuvant chemotherapy in breast cancer. J. Clin. Oncol. 2010;28(1):105–113.

10. Dieci MV, Mathieu MC, Guarneri V, et al. Prognostic and predictive value of tumor-infiltrating lymphocytes in two phase III randomized adjuvant breast cancer trials. Ann. Oncol. 2015;26(8):1698–1704

11. Кузнецова М.С., Шику Х., Караулов А.В., Сенников С.В. Современные Т-клеточные технологии иммунотерапии солидных опухолей. Медицинская иммунология. 2023;25(2):271–286. DOI: 10.15789/10.15789/1563-0625-MTC-2444

12. Elahi R., Khosh E., Tahmasebi S., Esmaeilzadeh A. Immune cell hacking: challenges and clinical approaches to create smarter generations of chimeric antigen receptor T cells. Front Immunol. 2018;9:1717. DOI: 10.3389/fimmu.2018.01717

13. Fischer JW, Bhattarai N. CAR-T cell therapy: mechanism, management, and mitigation of inflammatory toxicities. Front Immunol 2021;12:693016. DOI: 10.3389/fimmu.2021.693016

14. Gross G, Waks T, Eshhar Z. Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proceedings of the National Academy of Sciences of the United States of America. 1989;24(86):10024–10028.

15. Land CA, Musich PR, Haydar D, et al. Chimeric antigen receptor T-cell therapy in glioblastoma: charging the T cells to fight. J Transl Med. 2020;18(1):428. DOI: 10.1186/s12967-020-02598-0

16. Brocker T, Karjalainen K. Signals through T cell receptor-ζ chain alone are insufficient to prime resting T lymphocytes. Journal of Experimental Medicine. 1995;181(5):1653–1659.

17. Savoldo B, Ramos CA, Liu E, et al. CD28 costimulation improves expansion and persistence of chimeric antigen receptor-modified T cells in lymphoma patients. J Clin Invest. 2011;121(5):1822–1826. DOI: 10.1172/JCI46110

18. Chavez JC, Bachmeier C, Kharfan-Dabaja MA. CAR T-cell therapy for B-cell lymphomas: clinical trial results of available products. Ther Adv Hematol. 2019;10:2040620719841581. DOI: 10.1177/2040620719841581

19. Poorebrahim M, Melief J, Pico de Coana Y, et al. Counteracting CAR T cell dysfunction. Oncogene 2021;40(2):421–435. DOI: 10.1038/s41388-020-01501-x

20. Tokarew N, Ogonek J, Endres S, et al. Teaching an old dog new tricks: next-generation CAR T cells. Br J Cancer 2019;120(1):26–37. DOI: 10.1038/s41416-018-0325-1

21. Fischer JW, Bhattarai N. CAR-T cell therapy: mechanism, manage- ment, and mitigation of inflammatory toxicities. Front Immunol 2021;12:693016. DOI: 10.3389/fimmu.2021.693016

22. Tahmasebi S, Elahi R, Esmaeilzadeh A. Solid tumors challenges and new insights of CAR T cell engineering. Stem Cell Rev Rep. 2019;15(5):619–636. DOI: 10.1007/s12015-019-09901-7

23. Morello A, Sadelain M, Adusumilli PS. Mesothelin-Targeted CARs: Driving T Cells to Solid Tumors. Cancer Discov. 2016;6(2):133–146. DOI: 10.1158/2159-8290.CD-15-0583

24. Abbott RC, Cross RS, Jenkins MR. Finding the Keys to the CAR: Identifying Novel Target Antigens for T Cell Redirection Immunotherapies. Int J Mol Sci. 2020;21(2):515. DOI: 10.3390/ijms21020515

25. Scanlan MJ, Gure AO, Jungbluth AA, Old LJ, Chen YT. Cancer/testis antigens: an expanding family of targets for cancer immunotherapy. Immunol Rev. 2002;188:22–32. DOI: 10.1034/j.1600-065x.2002.18803.x

26. Pegram M, Slamon D. Biological rationale for HER2/neu (c-erbB2) as a target for monoclonal antibody therapy. Semin Oncol. 2000;27:13–19.

27. Ho-Yen CM, Jones JL, Kermorgant S. The clinical and functional significance of c-Met in breast cancer: a review. Breast Cancer Res. 2015;17:52.

28. Fultang N, Illendula A, Lin J, et al. ROR1 regulates chemoresistance in Breast Cancer via modulation of drug efflux pump ABCB1. Sci Rep. 2020;10:1821.

29. Goyette MA, Duhamel S, Aubert L, et al. The Receptor Tyrosine Kinase AXL Is Required at Multiple Steps of the Metastatic Cascade during HER2-Positive Breast Cancer Progression. Cell Rep. 2018;23:1476–1490.

30. Jing X, Liang H, Hao C, et al. Overexpression of MUC1 predicts poor prognosis in patients with breast cancer. Oncol Rep. 2019;41(2):801–810. DOI: 10.3892/or.2018.6887

31. Tang Z, Qian M, Ho M. The role of mesothelin in tumor progression and targeted therapy. Anticancer Agents Med Chem. 2013;13:276–280.

32. Joseph C, Arshad M, Kurozomi S, et al. Overexpression of the cancer stem cell marker CD133 confers a poor prognosis in invasive breast cancer. Breast Cancer Res Treat. 2019;174:387–399.

33. Hu S, Cao M, He Y, et al. CD44v6 Targeted by miR-193b-5p in the Coding Region Modulates the Migration and Invasion of Breast Cancer Cells. J Cancer. 2020;11:260–271.

34. Mal A, Bukhari AB, Singh RK, et al. EpCAM-Mediated Cellular Plasticity Promotes Radiation Resistance and Metastasis in Breast Cancer. Front Cell Dev Biol. 2020;8:597673.

35. Wang X, Wang Y, Yu L, et al. CSPG4 in cancer: multiple roles. Curr Mol Med. 2010;10: 419–429.

36. Zhou Q, Xu J, Xu Y, Sun S, Chen J. Role of ICAM1 in tumor immunity and prognosis of triplenegative breast cancer. Front Immunol. 2023;14:1176647. DOI: 10.3389/fimmu.2023.1176647

37. Byrd TT, Fousek K, Pignata A, et al. TEM8/ANTXR1-Specific CAR T Cells as a Targeted Therapy for Triple-Negative Breast Cancer. Cancer Res. 2018;78:489–500.

38. Chen H, Wei F, Yin M, et al. CD27 enhances the killing effect of CAR T cells targeting trophoblast cell surface antigen 2 in the treatment of solid tumors. Cancer Immunol Immunother. 2021;70(7):2059–2071. DOI: 10.1007/s00262-020-02838-8

39. Ginter PS, McIntire PJ, Cui X, et al. Folate Receptor Alpha Expression Is Associated With Increased Risk of Recurrence in Triple-negative Breast Cancer. Clin Breast Cancer. 2017;17:544–549.

40. Ahmed M, Cheung NK. Engineering anti-GD2 monoclonal antibodies for cancer immunotherapy. FEBS Lett. 2014;588(2):288–297. DOI: 10.1016/j.febslet.2013.11.030

41. Groh V, Rhinehart R, Secrist H, Bauer S, Grabstein KH, Spies T. Broad tumor-associated expression and recognition by tumor-derived gamma delta T cells of MICA and MICB. Proc Natl Acad Sci U S A. 1999;96:6879–6884.

42. Caswell-Jin JL, Lorenz C, Curtis C. Molecular heterogeneity and evolution in breast cancer. Ann Rev Cancer Biol. 2021;5(1):79–94. DOI: 10.1146/annurev-cancerbio-060220-014137

43. Newick K, O’Brien S, Moon E, Albelda SM. CAR T Cell Therapy for Solid Tumors. Annu Rev Med. 2017;68:139–152. DOI: 10.1146/annurev-med-062315-120245

44. Henke E., Nandigama R., Ergun S. Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Front Mol Biosci 2019;6:160. DOI: 10.3389/fmolb.2019.00160

45. Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Nat Med 2013;19(11):1423–1437. DOI: 10.1038/nm.3394

46. Sun L, Gao F, Gao Z,et al. Shed antigen-induced blocking effect on CAR-T cells targeting Glypican-3 in Hepatocellular Carcinoma. J Immunother Cancer. 2021;9(4):e001875. DOI: 10.1136/jitc-2020-001875

47. Mishra A, Maiti R, Mohan P, Gupta P. Antigen loss following CAR-T cell therapy: Mechanisms, implications, and potential solutions. Eur J Haematol. 2024;112(2):211–222. DOI: 10.1111/ejh.14101

48. Jafarzadeh L, Masoumi E, Fallah-Mehrjardi K, Mirzaei HR, Hadjati J. Prolonged Persistence of Chimeric Antigen Receptor (CAR) T Cell in Adoptive Cancer Immunotherapy: Challenges and Ways Forward. Front Immunol. 2020;11:702. DOI: 10.3389/fimmu.2020.00702

49. Schubert ML, Schmitt M, Wang L, et al. Side-effect management of chimeric antigen receptor (CAR) T-cell therapy. Ann Oncol 2021;32(1):34–48. DOI: 10.1016/j.annonc.2020.10.478

50. Huang M., Deng J., Gao L., Zhou J. Innovative strategies to advance CAR T cell therapy for solid tumors. Am J Cancer Res 2020;10(7):1979–1992.

51. Li H, Zhao Y. Increasing the safety and efficacy of chimeric antigen receptor T cell therapy. Protein Cell. 2017;8(8):573–589. DOI: 10.1007/s13238-017-0411-9

52. Павлова А.А., Масчан М.А., Пономарев В.Б. Адоптивная иммунотерапия генетически модифицированными Т-лимфоцитами, экспрессирующими химерные антигенные рецепторы. Онкогематология. 2017;12(1):17–32. DOI: 10.17650/1818-8346-2017-12-1-17-32

53. Zhang H, Ye ZL, Yuan ZG, et al. New Strategies for the Treatment of Solid Tumors with CAR-T Cells. Int J Biol Sci 2016;12(6):718–729. DOI: 10.7150/ijbs.14405

54. Zah E, Lin MY, Silva-Benedict A, et al. T Cells Expressing CD19/CD20 Bispecific Chimeric Antigen Receptors Prevent Anti- gen Escape by Malignant B Cells. Cancer Immunol Res 2016;4(6):498–508. DOI: 10.1158/2326-6066.CIR-15-0231

55. Lohmueller JJ, Ham JD, Kvorjak M, Finn OJ. mSA2 affinity-enhanced biotin-binding CAR T cells for universal tumor targeting. Oncoimmunology. 2017;7(1):e1368604. DOI: 10.1080/2162402X.2017.1368604

56. Crowther MD, Dolton G, Legut M, et al. Genome-wide CRISPR–Cas9 screening reveals ubiquitous T cell cancer targeting via the monomorphic MHC class I-related protein MR1. Nat Immunol. 2020;21:178–185. DOI: 10.1038/s41590-019-0578-8

57. Gherardin NA, McCluskey J, Rossjohn J, Godfrey DI. The diverse family of MR1-restricted T cells. J. Immunol. 2018;201:2862–2871. DOI: 10.4049/jimmunol.1801091

58. Lepore M, Kalinichenko A, Calogero S, et al. Functionally diverse human T cells recognize non-microbial antigens presented by MR1. Elife. 2017;6:e24476. DOI: 10.7554/eLife.24476

59. Chandran SS, Klebanoff CA. T cell receptor-based cancer immunotherapy: emerging efficacy and pathways of resistance. Immunol. Rev. 2019;290:127–147. DOI: 10.1111/imr.12772

60. Wang Z, Wang M, Chen J, et al. MR1-restricted T cells: the new dawn of cancer immunotherapy. Biosci Rep. 2020;40(11):BSR20202962. DOI: 10.1042/BSR20202962

61. Reits EA, Hodge JW, Herberts CA, et al. Radiation modulates the peptide repertoire, enhances MHC class I expression, and induces successful antitumor immunotherapy. J Exp Med. 2006;203(5):1259–1271. DOI: 10.1084/jem.20052494

62. Laplagne C, Domagala M, Le Naour A, et al. Latest advances in targeting the tumor microenvironment for tumor suppression. Int J Mol Sci 2019;20(19):4719. DOI: 10.3390/ijms20194719

63. Murad JP, Tilakawardane D, Park AK, et al. Pre-conditioning modifies the TME to enhance solid tumor CAR T cell efficacy and endogenous protective immunity. Mol Ther. 2021;29(7):2335–2349. DOI:10.1016/j.ymthe.2021.02.024


Review

For citations:


Sorokina L.E., Nezlina A.L., Krasnyi A.M., Sukhikh G.T. Prospects for the use of CAR-T-cell therapy in breast cancer: A look into the future. Регенерация органов и тканей. 2024;2(2):10-23. (In Russ.) https://doi.org/10.60043/2949-5938-2024-2-10-23

Views: 861


ISSN 2949-5938 (Online)