Preview

Регенерация органов и тканей

Расширенный поиск

Возможности биотехнологической платформы тутового шелкопряда (B. mori) для регенеративной медицины

https://doi.org/10.60043/2949-5938-2023-2-33-54

Аннотация

Регенеративная медицина, стремящаяся изменить современную медицинскую практику путем устранения коренных причин болезней и  расстройств, включает генную терапию, клеточную терапию и продукты тканевой инженерии, предназначенные для увеличения, восстановления, замены или регенерации органов, тканей, клеток, генов и метаболических процессов в организме. Биоматериалы — один из ключевых компонентов регенеративной медицины, на которых базируются успешные стратегии.

Представлен обзор биотехнологических методов, применяемых на этапах восходящего (USP) и нисходящего (DSP) процессов с использованием тутового шелкопряда (B. mori), направленных на улучшение качественных характеристик и  получение новых видов биоматериалов для удовлетворения потребностей регенеративной медицины и биомедицины. Разнообразие биотехнологических решений, позволяющих получить широкий спектр биоматериалов: производные оболочки кокона  — фиброин, серицин и  их композиты, рекомбинантные производные, антимикробные пептиды, модифицированные трансгенные шелковые волокна, трансгенные волокна, содержащие факторы роста и пептиды и др., — в совокупности представляет уникальный базис для создания биоиндустриальной платформы на основе тутового шелкопряда.

Об авторах

Е. Н. Юматов
Индивидуальный предприниматель Юматов Е.Н.; Научно-исследовательская станция шелководства — филиал ФГБНУ «Северо-Кавказский федеральный научный аграрный центр»
Россия

Юматов Евгений Николаевич  — индивидуальный предприниматель, научный сотрудник Научно-исследовательской станции шелководства 

Ставропольский край, г. Железноводск



Е. Г. Евлагина
Научно-исследовательская станция шелководства — филиал ФГБНУ «Северо-Кавказский федеральный научный аграрный центр»
Россия

Евлагина Елена Григорьевна — директор Научно-исследовательской станции шелководства

Ставропольский край, г. Железноводск



В. Г. Евлагин
Научно-исследовательская станция шелководства — филиал ФГБНУ «Северо-Кавказский федеральный научный аграрный центр»
Россия

Евлагин Виктор Григорьевич — научный сотрудник Научно-исследовательской станции шелководства

Ставропольский край, г. Железноводск



Е. Ф. Лейнвебер
Научно-исследовательская станция шелководства — филиал ФГБНУ «Северо-Кавказский федеральный научный аграрный центр»
Россия

Лейнвебер Евдокия Федотовна  — кандидат сельскохозяйственных наук, старший научный сотрудник Научно-исследовательской станции шелководства

Ставропольский край, г. Железноводск



Д. В. Товпеко
ФГБВОУ ВО «Военно-медицинская академия им. С.М. Кирова»
Россия

 Товпеко Дмитрий Викторович  — младший научный сотрудник научно-исследовательской лаборатории (военной терапии) научно-исследовательского отдела (экспериментальной медицины) научно-исследовательского центра

г. Санкт-Петербург



С. С. Дебенок
ФГБВОУ ВО «Военно-медицинская академия им. С.М. Кирова»
Россия

 Дебенок Семён Сергеевич  — старший лаборант научно-исследовательской лаборатории (тканевой инженерии) научно-исследовательского отдела (медико-биологических исследований) научно-исследовательского центра

г. Санкт-Петербург



Список литературы

1. Nguyen TP, Nguyen QV, Nguyen V-H, Le T-H, Huynh VQN, Vo D-VN, et al. Silk FibroinBased Biomaterials for Biomedical Applications: A Review. Polymers (Basel). 2019; 11(12):1933. DOI: 10.3390/polym11121933

2. Farahani A, Zarei-Hanzaki A, Abedi HR, Daryoush S, Ragheb ZD, Mianabadi F, et al. SilkBased Biopolymers Promise Extensive Biomedical Applications in Tissue Engineering, Drug Delivery, and BioMEMS. J Polym Environ. 2023; 31(11):4559–4582. DOI: 10.1007/s10924-023-02906-x

3. Giorgio G de, Matera B, Vurro D, Manfredi E, Galstyan V, Tarabella G, et al. Silk Fibroin Materials: Biomedical Applications and Perspectives. Bioengineering. 2024;11(2):167. DOI: 10.3390/bioengineering11020167

4. Kundu SC. Silk-based biomaterials for tissue engineering, regenerative and precision medicine. Second edition. Oxford: Woodhead Publishing, 2023. P. 833–872.

5. Thurber A, Omenetto F, Kaplan D. In vivo bioresponses to silk proteins. Biomaterials. 2015;71:145–157. DOI: 10.1016/j.biomaterials.2015.08.039

6. Jiao Z, Song Y, Jin Y, Zhang C, Peng D, Chen Z, et al. In Vivo Characterizations of the Immune Properties of Sericin: An Ancient Material with Emerging Value in Biomedical Applications. Macromol Biosci. 2017;17(12):1–6. DOI: 10.1002/mabi.201700229

7. Silva A, Costa E, Reis S, Spencer C, Calhelha R, Miguel S et al. Silk Sericin: A Promising Sustainable Biomaterial for Biomedical and Pharmaceutical Applications. Polymers (Basel). 2022;14(22):4931. DOI: 10.3390/polym14224931

8. Rahimpour S, Jabbari H, Yousofi H, Fathi A, Mahmoodi S, Jafarian MJ, et al. Regulatory effect of sericin protein in inflammatory pathways; A comprehensive review. Pathol Res Pract. 2023;243:154369. DOI: 10.1016/j.prp.2023.154369

9. Kato T, Kajikawa M, Maenaka K, Park EY. Silkworm expression system as a platform technology in life science. Applied Microbiology and Biotechnology. 2010;85(3):459–470. DOI: 10.1007/s00253-009-2267-2

10. Tomeh MA, Hadianamrei R, Zhao X. Silk Fibroin as a Functional Biomaterial for Drug and Gene Delivery. Pharmaceutics. 2019;11(10):494. DOI: 10.3390/pharmaceutics11100494

11. Wen D-L, Sun D-H, Huang P, Huang W, Su M, Wang Y, et al. Recent progress in silk fibroinbased flexible electronics. Microsyst Nanoeng. 2021;7(1):35. DOI: s41378-021-00261-2

12. Mukhtar H, Sahreen S, Sharif S, Ahmad H. Comparison of Host Expression Systems used for Efficient Recombinant Proteins Production. PPASB. 2023;60(1):5–28. DOI: 10.53560/PPASB (60-1)731

13. Usami A, Ishiyama S, Enomoto C, Okazaki H, Higuchi K, Ikeda M, et al. Comparison of recombinant protein expression in a baculovirus system in insect cells (Sf9) and silkworm. J Biochem. 2011;149(2):219–227. DOI: 10.1093/jb/mvq138

14. Minagawa S, Sekiguchi S, Nakaso Y, Igarashi T, Tomita M. Production of a correctly assembled fibrinogen using transgenic silkworms. Transgenic research. 2020;29(3):339–353. DOI: 10.1007/s11248-020-00202-1

15. Hirashima M, Imamura T, Yano K, Kawamura R, Meta A, Tokieda Y, et al. High-level expression and preparation of recombinant human fibrinogen as biopharmaceuticals. J Biochem. 2016;159(2):261–270. DOI: 10.1093/jb/mvv099

16. Wu X, Kamei K, Sato H, Sato SI, Takano R, Ichida M, et al. High-level expression of human acidic fibroblast growth factor and basic fibroblast growth factor in silkworm (Bombyx mori L.) using recombinant baculovirus. Protein Expression and Purification. 2001;21(1):192– 200. DOI: 10.1006/prep.2000.1358

17. Yu B, Sun W, Huang Z, Sun G, Le Li, Gu J, et al. Large-Scale Preparation of Highly Stable Recombinant Human Acidic Fibroblast Growth Factor in Escherichia coli BL21(DE3) plysS Strain. Front Bioeng Biotechnol. 2021;9:641505. DOI: 10.3389/fbioe.2021.641505

18. Pramanik N, Rath T. Current Scenario of Regenerative Medicine: Role of Cell, Scaffold and Growth Factor. In: S. Haidar Z, Y. Abdurakhmonov I, Barkaoui A, editors. Biomechanics and Functional Tissue Engineering. InTech; 2021. DOI: 10.5772/intechopen.94906

19. Sensebé L, Gadelorge M, Fleury-Cappellesso S. Production of mesen-chymal stromal/ stem cells according to good manufacturing practices: a review. Stem Cell Res. Therapy. 2013;4:66. DOI: 10.1186/scrt217

20. Супотницкий М, Елапов А, Меркулов В, Борисевич И, Климов В, Миронов А. Основные технологические процессы, используемые при производстве биомедицинских клеточных продуктов. БИОпрепараты. Профилактика, диагностика, лечение. 2015;2:36–45.

21. Madappura AP, Madduri S. A comprehensive review of silk-fibroin hydrogels for cell and drug delivery applications in tissue engineering and regenerative medicine. Comput Struct Biotechnol J. 2023;21:4868–4886. DOI: 10.1016/j.csbj.2023.10.012

22. Fathi-Achachelouei M, Keskin D, Bat E, Vrana NE, Tezcaner A. Dual growth factor delivery using PLGA nanoparticles in silk fibroin/PEGDMA hydrogels for articular cartilage tissue engineering. J Biomed Mater Res B Appl Biomater. 2020;108(5):2041–2062. DOI: 10.1002/jbm.b.34544

23. Grgacic E, Anderson D. Virus-like particles: passport to immune recognition. Methods. 2006;40(1):60–65. DOI: 10.1016/j.ymeth.2006.07.018

24. Kato T, Deo V, & Park E. Functional Virus-Like Particles Production Using Silkworm and Their Application in Life Science. Journal of Aquaculture & Research Development. 2012;s9(01). DOI: 10.4172/2155-952X.S9-001

25. Ramezaniaghdam M, Nahdi ND, Reski R. Recombinant Spider Silk: Promises and Bottlenecks. Front Bioeng Biotechnol. 2022;10:835637. DOI: 10.3389/fbioe.2022.835637

26. Mi J, Zhou Y, Ma S, Zhou X, Xu S, Yang Y, et al. High-strength and ultra-tough whole spider silk fibers spun from transgenic silkworms. Matter. 2023;6(10):3661–3683. DOI: 10.1016/j.matt.2023.08.013

27. Ishida N, Tsujimoto M, Kanaya T, Shimamura A, Tsuruoka N, Kodama S, et al. Expression and characterization of human bone morphogenetic protein-2 in silkworm larvae infected with recombinant Bombyx mori nuclear polyhedrosis virus. J Biochem. 1994;115(2):279– 285. DOI: 10.1093/oxfordjournals.jbchem.a124329

28. Fung SL, Wu X, Maceren JP, Mao Y, Kohn J. In Vitro Evaluation of Recombinant Bone Morphogenetic Protein-2 Bioactivity for Regenerative Medicine. Tissue Eng Part C Methods. 2019;25(9):553–559. DOI: 10.1089/ten.tec.2019.0156

29. Wu X, Kamei K, Sato H, Sato SI, Takano R, Ichida M, et al. High-level expression of human acidic fibroblast growth factor and basic fibroblast growth factor in silkworm (Bombyx mori L.) using recombinant baculovirus. Protein Expr Purif. 2001;21(1):192–200. DOI: 10.1006/преп.2000.1358

30. Chen K, Rao Z, Dong S, Chen Y, Wang X, Luo Y, et al. Roles of the fibroblast growth factor signal transduction system in tissue injury repair. Burns & Trauma. 2022;10:tkac005. DOI: 10.1093/burnst/tkac005

31. Masuda A, Xu J, Minamihata K, Kagawa G, Hamada Y, Morifuji Y, et al. Production of a biologically active human basic fibroblast growth factor using silkworm-baculovirus expression vector system. Journal of Asia-Pacific Entomology. 2018;21(2):716–720. DOI: 10.1016/j.aspen.2018.05.002

32. Han J, Zang Y, Lu H, Zhu J, Qin J. A novel recombinant dual human SCF expressed in and purified from silkworm, Bombyx mori, possesses higher bioactivity than recombinant monomeric human SCF. Eur J Haematol. 2004;72(4):273–279. DOI: 10.1111/j.1600-0609.2004.00221.x

33. Imai, S, Li, Z, Iiyama K, Miyagawa Y, Toyoda M, Umezawa A, Lee J., et al. Biologically active human bone morphogenetic protein 4 fused to collagen-binding domain produced in silkworm-baculovirus expression system. J. Insect Biotechnol. Sericol. 2013;82(2):2039–2044. DOI: 10.11416/jibs.82.2_039

34. Bessa PC, Balmayor ER, Azevedo HS, Nürnberger S, Casal M, van Griensven M, et al. Silk fibroin microparticles as carriers for delivery of human recombinant BMPs. Physical characterization and drug release. Journal of tissue engineering and regenerative medicine. 2010;4(5):349–355. DOI: 10.1002/терм.245

35. Kinoshita Y, Xu J, Masuda A, Minamihata K, Kamiya N, Mon H, et al. Expression and purification of biologically active human granulocyte-macrophage colony stimulating factor (hGM-CSF) using silkworm-baculovirus expression vector system. Protein Expr Purif. 2019;159:69–74. DOI: 10.1016/j.pep.2019.03.010

36. Wang F, Wang R, Wang Y, Zhao P, Xia Q. Large-scale production of bioactive recombinant human acidic fibroblast growth factor in transgenic silkworm cocoons. Sci Rep. 2015;5:16323. DOI: 10.1038/srep16323

37. Beenken A, Mohammadi M. The FGF family: biology, pathophysiology and therapy. Nat Rev Drug Discov. 2009;8(3):235–253. DOI: 10.1038/nrd2792

38. Maruta R, Takaki K, Yamaji Y, Sezutsu H, Mori H, Kotani E. Effects of transgenic silk materials that incorporate FGF-7 protein microcrystals on the proliferation and differentiation of human keratinocytes. FASEB Bioadv. 2020;2(12):734–744. DOI: 10.1096/fba.2020-00078

39. Wu M, Ruan J, Ye X, Zhao S, Tang X, Wang X, et al. P25 Gene Knockout Contributes to Human Epidermal Growth Factor Production in Transgenic Silkworms. Int J Mol Sci. 2021;22(5):2709. DOI: 10.3390/ijms22052709

40. Chouhan D, Mandal BB. Silk biomaterials in wound healing and skin regeneration therapeutics: From bench to bedside. Acta Biomater. 2020;103:24–51. DOI: 10.1016/j.actbio.2019.11.050

41. Zhang W, Li Z, Lan W, Guo H, Chen F, Wang F, et al. Bioengineered silkworm model for expressing human neurotrophin-4 with potential biomedical application. Front Physiol. 2022;13:1104929. DOI: 10.3389/fphys.2022.1104929

42. Chen W, Wang F, Tian C, Wang Y, Xu S, Wang R, et al. Transgenic Silkworm-Based Silk Gland Bioreactor for Large Scale Production of Bioactive Human Platelet-Derived Growth Factor (PDGF-BB) in Silk Cocoons. International Journal of Molecular Sciences. 2018;19(9):2533 DOI: 10.3390/ijms19092533

43. Minagawa S, Sekiguchi S, Nakaso Y, Igarashi T, Tomita M. Production of a correctly assembled fibrinogen using transgenic silkworms. Transgenic Res. 2020;29(3):339–353. DOI: 10.1007/s11248-020-00202-1

44. Xu S, Tan H, Yang Q, Wang R, Tian C, Ji Y, et al. Fabrication of a Silk Sericin Hydrogel System Delivering Human Lactoferrin Using Genetically Engineered Silk with Improved Bioavailability to Alleviate Chemotherapy-Induced Immunosuppression. ACS Applied Materials & Interfaces. 2021;13(38):45175–45190. DOI: https://doi.org/10.1021/acsami.1c08409

45. Aleisa F, Sakashita K, Lee J, AbuSamra D, Al Alwan B, Nozue S, et al. Functional binding of E-selectin to its ligands is enhanced by structural features beyond its lectin domain. Journal of Biological Chemistry. 2020;295(11):3719–3733. DOI: 10.1074/jbc. RA119.010910

46. IBL America Online Store. Fibronectin Neosilk®, Cellular. 2023. https://www.ibl-america. com/fibronectin-neosilk-cellular [Accessed Dec 14, 2023].

47. Tomita M, Munetsuna H, Sato T, Adachi T, Hino R, Hayashi M, et al. Transgenic silkworms produce recombinant human type III procollagen in cocoons. Nat Biotechnol. 2003;21(1):52–56. DOI: 10.1038/nbt771.

48. Qi Q, Yao L, Liang Z, Yan D, Li Z, Huang Y et al. Production of human type II collagen using an efficient baculovirus-silkworm multigene expression system. Mol Genet Genomics. 2016;291(6):2189–2198. DOI: 10.1007/s00438-016-1251-7

49. Protein Production Business using Transgenic Silkworms | Immuno-Biological Laboratories Co,Ltd. | IBL. 2023. https://www.ibl-japan.co.jp/en/business/silkworm [Accessed Dec 14, 2023].

50. Fertala A. Three Decades of Research on Recombinant Collagens: Reinventing the Wheel or Developing New Biomedical Products? Bioengineering. 2020;7(4):155. DOI: 10.3390/bioengineering7040155

51. Kusakabe T. Production of antiviral vaccine antigens using a silkworm-baculovirus expression system. J Pharmacol Sci. 2023;151(3):156–161. DOI: 10.1016/j.jphs.2023.01.002

52. Miyata T, Minamihata K, Kurihara K, Kamizuru Y, Gotanda M, Obayashi M, et al. Highly efficient protein expression of Plasmodium vivax surface antigen, Pvs25 by silkworm, Bombyx mori and its biochemical analysis; 2022. DOI: 10.1101/2022.03.03.482736

53. Maegawa K, Shibata T, Yamaguchi R, Hiroike K, Izzati UZ, Kuroda K, et al. Overexpression of a virus-like particle influenza vaccine in Eri silkworm pupae, using Autographa californica nuclear polyhedrosis virus and host-range expansion. Archives of virology. 2018;163(10):2787–2797. DOI: 10.1007/s00705-018-3941-4

54. Nerome K, Imagawa T, Sugita S, Arasaki Y, Maegawa K, Kawasaki K, et al. The potential of a universal influenza virus-like particle vaccine expressing a chimeric cytokine. Life Sci Alliance. 2023;6(1). DOI: 10.26508/lsa.2022015

55. Wang Y, Wang F, Xu S, Wang R, Chen W, Hou K, et al. Genetically engineered bi-functional silk material with improved cell proliferation and anti-inflammatory activity for medical application. Acta Biomater. 2019;86:148–157. DOI: 10.1016/j.actbio.2018.12.036

56. Lian A, Yamaji Y, Kajiwara K, Takaki K, Mori H, Liew MWO, et al. A Bioengineering Approach for the Development of Fibroblast Growth Factor-7-Functionalized Sericin Biomaterial Applicable for the Cultivation of Keratinocytes. Int J Mol Sci. 2022;23(17): 9953. DOI: 10.3390/ijms23179953

57. Otsuki R, Yamamoto M, Matsumoto E, Iwamoto S, Sezutsu H, Suzui M, et al. Bioengineered silkworms with butterfly cytotoxin-modified silk glands produce sericin cocoons with a utility for a new biomaterial. Proc Natl Acad Sci USA. 2017;114(26):6740–6745. DOI: 10.1073/pnas.1703449114

58. Li Y, Wei Y, Zhang G, Zhang Y. Sericin from Fibroin-Deficient Silkworms Served as a Promising Resource for Biomedicine. Polymers (Basel). 2023;15(13):2941.DOI: 10.3390/polym15132941

59. Yamano M, Hirose R, Lye P, Takaki K, Maruta R, On Liew M, et al. Bioengineered Silkworm for Producing Cocoons with High Fibroin Content for Regenerated Fibroin BiomaterialBased Applications. Int J Mol Sci. 2022;23(13):7433. DOI: 10.3390/ijms23137433

60. Chen X, Wang Y, Wang Y, Li Q, Liang X, Wang G, et al. Ectopic expression of sericin enables efficient production of ancient silk with structural changes in silkworm. Nat Commun. 2022;13(1):6295. DOI: 10.1038/s41467-022-34128-5

61. Teramoto H, Iga M, Tsuboi H, Nakajima K. Characterization and Scaled-Up Production of Azido-Functionalized Silk Fiber Produced by Transgenic Silkworms with an Expanded Genetic Code. Int J Mol Sci. 2019;20(3): 616. DOI: 10.3390/ijms20030616

62. Saviane A, Romoli O, Bozzato A, Freddi G, Cappelletti C, Rosini E, et al. Intrinsic antimicrobial properties of silk spun by genetically modified silkworm strains. Transgenic Res. 2018;27(1):87–101. DOI: 10.1007/s11248-018-0059-0

63. Li Z, Jiang Y, Cao G, Li J, Xue R, Gong C. Construction of transgenic silkworm spinning antibacterial silk with fluorescence. Mol Biol Rep. 2015;42(1):19–25. DOI: 10.1007/s11033-014-3735

64. Mi J, Zhou Y, Ma S, Zhou X, Xu S, Yang Y, et al. High-strength and ultra-tough whole spider silk fibers spun from transgenic silkworms. Matter. 2023;6(10):3661–3683. DOI: 10.1016/j.matt.2023.08.013

65. Reddy MSB, Ponnamma D, Choudhary R, Sadasivuni KK. A Comparative Review of Natural and Synthetic Biopolymer Composite Scaffolds. Polymers (Basel). 2021;13(7):1105. DOI: 10.3390/polym13071105

66. Biopolymer-Based Formulations. Elsevier; 2020.

67. George AM, Reddy Peddireddy SP, Thakur G, Rodrigues FC. Biopolymer-based scaffolds. In: Biopolymer-Based Formulations. Elsevier; 2020. P. 717–749. DOI: 10.1016/B978-0-12-816897-4.00029-1

68. Chen F-M, Liu X. Advancing biomaterials of human origin for tissue engineering. Progress in Polymer Science. 2016;53:86–168. DOI: 10.1016/j.progpolymsci.2015.02.004

69. Pilia M, Guda T, Appleford M. Development of composite scaffolds for load-bearing segmental bone defects. BioMed Research International. 2013;2013:458253. DOI: 10.1155/2013/458253

70. Goonoo N, Bhaw-Luximon A, Bowlin GL, Jhurry D. An assessment of biopolymer- and synthetic polymer-based scaffolds for bone and vascular tissue engineering. Polymer International. 2013;62(4):523–533. DOI: 10.1002/pi.4474

71. Kochhar D, DeBari MK, Abbott RD. The Materiobiology of Silk: Exploring the Biophysical Influence of Silk Biomaterials on Directing Cellular Behaviors. Front Bioeng Biotechnol. 2021;9:697981. DOI: 10.3389/fbioe.2021.697981

72. Helenius J, Heisenberg C-P, Gaub HE, Muller DJ. Single-cell force spectroscopy. J Cell Sci. 2008;121(11):1785–1791. DOI: 10.1242/jcs.030999

73. Vogel V. Mechanotransduction involving multimodular proteins: converting force into biochemical signals. Annu Rev Biophys Biomol Struct. 2006;35:459–488. DOI: 10.1146/annurev.biophys.35.040405.102013

74. Chang G, Kim HJ, Vunjak-Novakovic G, Kaplan DL, Kandel R. Enhancing annulus fibrosus tissue formation in porous silk scaffolds. J Biomed Mater Res A. 2010;92(1):43–51. DOI: 10.1002/jbm.a.32326

75. Hendriks FM, Brokken D, Oomens CWJ, Bader DL, Baaijens FPT. The relative contributions of different skin layers to the mechanical behavior of human skin in vivo using suction experiments. Med Eng Phys. 2006;28(3):259–266. DOI: 10.1016/j.medengphy.2005.07.001

76. Salameh N, Peeters F, Sinkus R, Abarca-Quinones J, Annet L, Beek LC, et al. Hepatic viscoelastic parameters measured with MR elastography: correlations with quantitative analysis of liver fibrosis in the rat. J Magn Reson Imaging. 2007;26(4):956–962. DOI: 10.1002/jmri.21099

77. Wang D, Liu H, Fan Y. Silk fibroin for vascular regeneration. Microscopy Research and Technique. 2017;80(3):280–290. DOI: 10.1002/jemt.22532

78. Cheng L, Tong X, Li Z, Liu Z, Huang H, Zhao H, et al. Natural Silkworm Cocoon Composites with High Strength and Stiffness Constructed in Confined Cocooning Space. Polymers (Basel). 2018;10(11):1214. DOI: 10.3390/polym10111214

79. Cheng L, Li Z, Liu Z, Chen S, Bao Y, Gao L, et al. Enhanced thermal and mechanical properties of natural silkworm cocoon composites constructed by multi-silkworm larvae simultaneously. Materials Letters. 2019;247:126–130. DOI: 10.1016/j.matlet.2019.03.108

80. Boulet-Audet M, Holland C, Gheysens T, Vollrath F. Dry-Spun Silk Produces NativeLike Fibroin Solutions. Biomacromolecules. 2016;17(10):3198–3204. DOI: 10.1021/acs.biomac.6b00887

81. Wu G, Song P, Zhang D, Liu Z, Li L, Huang H, et al. Robust composite silk fibers pulled out of silkworms directly fed with nanoparticles. Int J Biol Macromol. 2017;104:533–538. DOI: 10.1016/j.ijbiomac.2017.06.069

82. Cheng L, Huang H, Chen S, Wang W, Dai F, Zhao H. Characterization of silkworm larvae growth and properties of silk fibres after direct feeding of copper or silver nanoparticles. Materials & Design. 2017;129:125–134. DOI: 10.1016/j.matdes.2017.04.096

83. Cai L, Shao H, Hu X, Zhang Y. Reinforced and Ultraviolet Resistant Silks from Silkworms Fed with Titanium Dioxide Nanoparticles. ACS Sustainable Chem. Eng. 2015;3:2551–2557. DOI: 10.1021/acssuschemeng.5b00749

84. Wang J-T, Li L-L, Feng L, Li J-F, Jiang L-H, Shen Q. Directly obtaining pristine magnetic silk fibers from silkworm. Int J Biol Macromol. 2014;63:205–209. DOI: 10.1016/j.ijbiomac.2013.11.006

85. Wang Q, Wang C, Zhang M, Jian M, Zhang Y. Feeding Single-Walled Carbon Nanotubes or Graphene to Silkworms for Reinforced Silk Fibers. Nano Lett. 2016;16:6695–6700. DOI: 10.1021/acs.nanolett.6b03597

86. Fan S, Zheng X, Zhan Q, Zhang H, Shao H, Wang J, et al. Super-strong and Intrinsically Fluorescent Silkworm Silk from Carbon Nanodots Feeding. Nanomicro Lett. 2019;11(1):75. DOI: 10.1007/s40820-019-0303-z

87. Gao Z-F, Zheng L-L, Fu W-L, Zhang L, Li J-Z, Chen P. Feeding Alginate-Coated Liquid Metal Nanodroplets to Silkworms for Highly Stretchable Silk Fibers. Nanomaterials (Basel). 2022;12(7):1177. DOI: 10.3390/nano12071177

88. Minkner R, Xu J, Zagst H, Wätzig H, Kato T, Oltmann-Norden I, et al. A systematic and methodical approach for the efficient purification of recombinant protein from silkworm larval hemolymph. J Chromatogr B Analyt Technol Biomed Life Sci. 2020;1138:121964. DOI: 10.1016/j.jchromb.2019.121964

89. Minkner R, Xu J, Takemura K, Boonyakida J, Wätzig H, Park EY. Ni-modified magnetic nanoparticles for affinity purification of His-tagged proteins from the complex matrix of the silkworm fat body. J Nanobiotechnol. 2020;18(1):159. DOI: 10.1186/s12951-020-00715-1

90. Yagi H, Yanaka S, Yogo R, Ikeda A, Onitsuka M, Yamazaki T, et al. Silkworm Pupae Function as Efficient Producers of Recombinant Glycoproteins with Stable-Isotope Labeling. Biomolecules 2020;10(11):1482. DOI: 10.3390/biom10111482

91. Yamada H, Nakao H, Takasu Y, Tsubouchi K. Preparation of undegraded native molecular fibroin solution from silkworm cocoons. Materials Science and Engineering. 2001;14(1– 2):41–46.

92. Rockwood D, Preda R, Yücel T, Wang X, Lovett M, Kaplan D. Materials fabrication from Bombyx mori silk fibroin. Nat Protoc. 2011;6(10):1612–631. DOI: 10.1038/nprot.2011.379.

93. Wöltje M, Kölbel A, Aibibu D, Cherif C. A Fast and Reliable Process to Fabricate Regenerated Silk Fibroin Solution from Degummed Silk in 4 Hours. International Journal of Molecular Sciences. 2021;22(19):10565. DOI: 10.3390/ijms221910565

94. Kim H, Song D, Kim M, Ryu S, Um I, Ki C, et al. Effect of silk fibroin molecular weight on physical property of silk hydrogel. Polymer. 2016;90:26–33. DOI: 10.1016/j.polymer.2016.02.054

95. Carissimi G, Lozano-Pérez A, Montalbán M, Aznar-Cervantes S, Cenis J, Víllora G. Revealing the Influence of the Degumming Process in the Properties of Silk Fibroin Nanoparticles. Polymers (Basel). 2019;11(12):2045. DOI: 10.3390/polym11122045

96. Feng Y, Lin J, Niu L, Wang Y, Cheng Z, Sun X, et al. High Molecular Weight Silk Fibroin Prepared by Papain Degumming. Polymers (Basel). 2020;12(9):2105. DOI: 10.3390/polym12092105

97. Aoki M, Masuda Y, Ishikawa K, Tamada Y. Fractionation of Regenerated Silk Fibroin and Characterization of the Fractions. Molecules. 2021;26(20):6317. DOI: 10.3390/molecules26206317

98. Liu X, Huang Q, Pan P, Fang M, Zhang Y, Yang S, et al. Comparative Study of the Preparation of High-Molecular-Weight Fibroin by Degumming Silk with Several Neutral Proteases. Polymers (Basel). 2023;15(16): 3383. DOI: 10.3390/polym15163383

99. Wang K, Ma Q, Zhou H-T, Zhao J-M, Cao M, Wang S-D. Review on Fabrication and Application of Regenerated Bombyx mori Silk Fibroin Materials. AUTEX Research Journal. 2023;23(2):164–183. DOI: 10.2478/aut-2021-0059

100. Liu J, Shi L, Deng Y, Zou M, Cai B, Song Y, et al. Silk sericin-based materials for biomedical applications. Biomaterials. 2022;287(17):121638. DOI: 10.1016/j.biomaterials.2022.121638

101. Castrillón Martínez DC, Zuluaga CL, Restrepo-Osorio A, Álvarez-López C. Characterization of sericin obtained from cocoons and silk yarns. Procedia Engineering. 2017;200:377– 383. DOI: 10.1016/j.proeng.2017.07.053

102. Aramwit P, Kanokpanont S, Nakpheng T, Srichana T. The effect of sericin from various extraction methods on cell viability and collagen production. International Journal of Molecular Sciences. 2010;11(5):2200–2211. DOI: 10.3390/ijms11052200

103. Rocha LK, Favaro LI, Rios AC, Silva EC, Silva WF, Stigliani TP, et al. Sericin from Bombyx mori cocoons. Part I: Extraction and physicochemical-biological characterization for biopharmaceutical applications. Process Biochemistry. 2017;61:163–177. DOI: 10.1016/j.procbio.2017.06.019

104. Bascou R, Hardouin J, Mlouka M, Guénin E, Nesterenko A. Detailed investigation on new chemical-free methods for silk sericin extraction. Materials Today Communications. 2022;33:104491. DOI: 10.1016/j.mtcomm.2022.104491

105. Buckley CT, Vinardell T, Thorpe SD, Haugh MG, Jones E, McGonagle D et al. Functional properties of cartilaginous tissues engineered from infrapatellar fat pad-derived mesenchymal stem cells. J Biomech. 2010;43(5):920–926. DOI: 10.1016/j.jbiomech.2009.11.005

106. Yang L, Korom S, Welti M, Hoerstrup SP, Zünd G, Jung FJ, et al. Tissue engineered cartilage generated from human trachea using DegraPol scaffold. Eur J Cardiothorac Surg. 2003;24(2):201–207. DOI: 10.1016/s1010-7940(03)00263-x

107. Sionkowska A. Current research on the blends of natural and synthetic polymers as new biomaterials: Review. Progress in Polymer Science. 2011;36(9):1254–1276. DOI: 10.1016/j.progpolymsci.2011.05.003

108. Sionkowska A, Michalska M, Walczak M. Preparation and characterization of silk fibroin/collagen sponge with nanohydroxyapatite. Molecular Crystals and Liquid Crystals 2016;640(1):106–112. DOI: 10.1080/15421406.2016.1257332

109. Grabska-Zielińska S, Sionkowska A. How to Improve Physico-Chemical Properties of Silk Fibroin Materials for Biomedical Applications?-Blending and Cross-Linking of Silk FibroinA Review. Materials. 2021;14(6):1510. DOI: 10.3390/ma14061510

110. Johari N, Khodaei A, Samadikuchaksaraei A, Reis RL, Kundu SC, Moroni L. Ancient fibrous biomaterials from silkworm protein fibroin and spider silk blends: Biomechanical patterns. Acta Biomater. 2022;153:38–67. DOI: 10.1016/j.actbio.2022.09.030

111. Suzuki S, Rayner C, Chirila T. Silk fibroin/sericin native blends as potential biomaterial templates. ATROA. 2019;5(1): 11-19. DOI: 10.15406/atroa.2019.05.00093

112. Li M, Tian W, Zhang Y, Song H, Yu Y, Chen X, et al. Enhanced Silk Fibroin/Sericin Composite Film: Preparation, Mechanical Properties and Mineralization Activity. Polymers (Basel). 2022;14(12):2466. DOI: 10.3390/polym14122466

113. Wang F, Guo C, Yang Q, Li C, Zhao P, Xia Q, et al. Protein composites from silkworm cocoons as versatile biomaterials. Acta Biomater. 2021;121:180–192. DOI: 10.1016/j.actbio.2020.11.037

114. Han C, Liu F, Zhang Y, Chen W, Luo W, Ding F, et al. Human Umbilical Cord Mesenchymal Stem Cell Derived Exosomes Delivered Using Silk Fibroin and Sericin Composite Hydrogel Promote Wound Healing. Front Cardiovasc Med. 2021;8:713021. DOI: 10.3389/fcvm.2021.713021

115. Ohnishi K, Murakami M, Morikawa M, Yamaguchi A. Effect of the silk protein sericin on cryopreserved rat islets. J Hepatobiliary Pancreat Sci. 2012;19(4):354–360. DOI: 10.1007/s00534-011-0415-4

116. Miyamoto Y, Oishi K, Yukawa H, Noguchi H, Sasaki M, Iwata H, et al. Cryopreservation of human adipose tissue-derived stem/progenitor cells using the silk protein sericin. Cell Transplant. 2012;21(2-3):617–622. DOI: 10.3727/096368911X605556

117. Jo Y, Kweon H, Ji S, Kim J, Kim K. Silk Protein as a Fetal Bovine Serum Substitute for Animal Cell Culture. Microbiology and Biotechnology Letters. 2019;47(4):487–497. DOI: 10.4014/ mbl.1901.01015

118. Sezutsu H, Sumitani M, Kondo M, Kobayashi I, Takasu Y, Suzuki T, et al. Construction of a Platform for the Development of Pharmaceutical and Medical Applications Using Transgenic Silkworms. Yakugaku Zasshi. 2018;138(7):863–874. DOI: 10.1248/yakushi.17-00202-1

119. Biopharma-reporter.com. Vaxess announces $9 million in funding for mRNA vaccine patch (2023). https://www.biopharma-reporter.com/Article/2023/09/14/vaxess-announces-9-million-funding-for-mrna-vaccine-patch [Accessed Dec 14, 2023].

120. Horizon Magazine. Spinning silk into next-generation eye and knee implants (2023). https://projects.research-and-innovation.ec.europa.eu/en/horizon-magazine/spinning-silknext-generation-eye-and-knee-implants [Accessed Dec 15, 2023].

121. Lee HG, Jang MJ, Park B-D, Um IC. Structural Characteristics and Properties of Redissolved Silk Sericin. Polymers (Basel). 2023;15(16):3405. DOI: 10.3390/polym15163405


Рецензия

Для цитирования:


Юматов Е.Н., Евлагина Е.Г., Евлагин В.Г., Лейнвебер Е.Ф., Товпеко Д.В., Дебенок С.С. Возможности биотехнологической платформы тутового шелкопряда (B. mori) для регенеративной медицины. Регенерация органов и тканей. 2023;1(2):33-54. https://doi.org/10.60043/2949-5938-2023-2-33-54

For citation:


Yumatov E.N., Evlagina E.G., Evlagin V.G., Leinweber E.F., Tovpeko D.V., Debenok S.S. Possibilities of Bombyx mori (B. mori) biotechnological platform for regenerative medicine. Регенерация органов и тканей. 2023;1(2):33-54. (In Russ.) https://doi.org/10.60043/2949-5938-2023-2-33-54

Просмотров: 415


ISSN 2949-5938 (Online)