Preview

Регенерация органов и тканей

Расширенный поиск

Перспективы применения CAR-T-клеточной терапии при раке молочной железы: взгляд в будущее

https://doi.org/10.60043/2949-5938-2024-2-10-23

Аннотация

Клеточная иммунотерапия CAR-T (Chimeric Antigen Receptor T-Cell, или T-клетки с химерным антигенным рецептором) является передовым подходом к лечению онкологических заболеваний. В настоящее время CAR-T-терапия показала высокую эффективность при лечении онкогематологических заболеваний. При этом предпринятые многочисленные попытки создания CAR-T-конструкций для терапии солидных опухолей, в частности рака молочной железы (РМЖ), не продемонстрировали выраженной клинической эффективности. Предполагается, что ключ к решению этих проблем лежит в разработке и внедрении новых генно-инженерных стратегий.
Целью данного обзора стало обобщение и систематизация существующих исследований с технологией CAR. В настоящей работе мы суммируем потенциальные мишени для лечения РМЖ, детализируем имеющиеся ограничения использования данных технологий и определяем важные будущие тенденции в данной области.

Об авторах

Л. Е. Сорокина
ФГБУ «Национальный медицинский исследовательский центр акушерства, гинекологии и перинатологии имени академика В.И. Кулакова» Министерства здравоохранения Российской Федерации
Россия

Сорокина Лея Евгеньевна - м.н.с. лаборатории цитологии

Москва, 117997, Москва, ул. Академика Опарина, д. 4



А. М. Незлина
ФГБУ «Национальный медицинский исследовательский центр акушерства, гинекологии и перинатологии имени академика В.И. Кулакова» Министерства здравоохранения Российской Федерации
Россия

Незлина Александра Леонидовна - м.н.с. лаборатории цитологии

Москва, 117997, Москва, ул. Академика Опарина, д. 4



А. М. Красный
ФГБУ «Национальный медицинский исследовательский центр акушерства, гинекологии и перинатологии имени академика В.И. Кулакова» Министерства здравоохранения Российской Федерации
Россия

Красный Алексей Михайлович - к.б.н., заведующий лабораторией цитологии

Москва, 117997, Москва, ул. Академика Опарина, д. 4



Г. Т. Сухих
ФГБУ «Национальный медицинский исследовательский центр акушерства, гинекологии и перинатологии имени академика В.И. Кулакова» Министерства здравоохранения Российской Федерации
Россия

Сухих Геннадий Тихонович - академик РАН, д.м.н., профессор, директор

Москва, 117997, Москва, ул. Академика Опарина, д. 4



Список литературы

1. Рак молочной железы. https://www.who.int/ru/news-room/fact-sheets/detail/breast-cancer

2. Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2024;74(3):229–263. DOI: 10.3322/caac.21834

3. Caswell-Jin JL, Lorenz C, Curtis C. Molecular heterogeneity and evolution in breast cancer. Ann Rev Cancer Biol. 2021;5(1):79–94. DOI: 10.1146/annurev-cancerbio-060220- 014137

4. Harbeck N, Gnant M. Breast cancer. Lancet. 2017;389(10074):1134–1150. DOI: 10.1016/S0140-6736(16)31891-8

5. Barzaman K, Karami J, Zarei Z, Hosseinzadeh A, Kazemi MH, Moradi-Kalbolandi S. et al. Breast cancer: Biology, biomarkers, and treatments. Int Immunopharmacol. 2020;84:106535.

6. Palomeras S, Ruiz-Martínez S, Puig T. Targeting Breast Cancer Stem Cells to Overcome Treatment Resistance. Molecules. 2018;23(9):2193. DOI: 10.3390/molecules23092193

7. Anuvab D, Subhrojyoti G, Shreya J, et al. Recent advancement in breast cancer treatment using CAR T cell therapy:-A review. 2023;7:100090. DOI: 10.1016/j.adcanc.2023.100090

8. Ciarka A, Piątek M, Pęksa R, Kunc M, Senkus E. Tumor-Infiltrating Lymphocytes (TILs) in Breast Cancer: Prognostic and Predictive Significance across Molecular Subtypes. Biomedicines. 2024;12(4):763. DOI: 10.3390/biomedicines12040763

9. Denkert C, Loibl S, Noske A, et al. Tumor-associated lymphocytes as an independent predictor of response to neoadjuvant chemotherapy in breast cancer. J. Clin. Oncol. 2010;28(1):105–113.

10. Dieci MV, Mathieu MC, Guarneri V, et al. Prognostic and predictive value of tumor-infiltrating lymphocytes in two phase III randomized adjuvant breast cancer trials. Ann. Oncol. 2015;26(8):1698–1704

11. Кузнецова М.С., Шику Х., Караулов А.В., Сенников С.В. Современные Т-клеточные технологии иммунотерапии солидных опухолей. Медицинская иммунология. 2023;25(2):271–286. DOI: 10.15789/10.15789/1563-0625-MTC-2444

12. Elahi R., Khosh E., Tahmasebi S., Esmaeilzadeh A. Immune cell hacking: challenges and clinical approaches to create smarter generations of chimeric antigen receptor T cells. Front Immunol. 2018;9:1717. DOI: 10.3389/fimmu.2018.01717

13. Fischer JW, Bhattarai N. CAR-T cell therapy: mechanism, management, and mitigation of inflammatory toxicities. Front Immunol 2021;12:693016. DOI: 10.3389/fimmu.2021.693016

14. Gross G, Waks T, Eshhar Z. Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proceedings of the National Academy of Sciences of the United States of America. 1989;24(86):10024–10028.

15. Land CA, Musich PR, Haydar D, et al. Chimeric antigen receptor T-cell therapy in glioblastoma: charging the T cells to fight. J Transl Med. 2020;18(1):428. DOI: 10.1186/s12967-020-02598-0

16. Brocker T, Karjalainen K. Signals through T cell receptor-ζ chain alone are insufficient to prime resting T lymphocytes. Journal of Experimental Medicine. 1995;181(5):1653–1659.

17. Savoldo B, Ramos CA, Liu E, et al. CD28 costimulation improves expansion and persistence of chimeric antigen receptor-modified T cells in lymphoma patients. J Clin Invest. 2011;121(5):1822–1826. DOI: 10.1172/JCI46110

18. Chavez JC, Bachmeier C, Kharfan-Dabaja MA. CAR T-cell therapy for B-cell lymphomas: clinical trial results of available products. Ther Adv Hematol. 2019;10:2040620719841581. DOI: 10.1177/2040620719841581

19. Poorebrahim M, Melief J, Pico de Coana Y, et al. Counteracting CAR T cell dysfunction. Oncogene 2021;40(2):421–435. DOI: 10.1038/s41388-020-01501-x

20. Tokarew N, Ogonek J, Endres S, et al. Teaching an old dog new tricks: next-generation CAR T cells. Br J Cancer 2019;120(1):26–37. DOI: 10.1038/s41416-018-0325-1

21. Fischer JW, Bhattarai N. CAR-T cell therapy: mechanism, manage- ment, and mitigation of inflammatory toxicities. Front Immunol 2021;12:693016. DOI: 10.3389/fimmu.2021.693016

22. Tahmasebi S, Elahi R, Esmaeilzadeh A. Solid tumors challenges and new insights of CAR T cell engineering. Stem Cell Rev Rep. 2019;15(5):619–636. DOI: 10.1007/s12015-019-09901-7

23. Morello A, Sadelain M, Adusumilli PS. Mesothelin-Targeted CARs: Driving T Cells to Solid Tumors. Cancer Discov. 2016;6(2):133–146. DOI: 10.1158/2159-8290.CD-15-0583

24. Abbott RC, Cross RS, Jenkins MR. Finding the Keys to the CAR: Identifying Novel Target Antigens for T Cell Redirection Immunotherapies. Int J Mol Sci. 2020;21(2):515. DOI: 10.3390/ijms21020515

25. Scanlan MJ, Gure AO, Jungbluth AA, Old LJ, Chen YT. Cancer/testis antigens: an expanding family of targets for cancer immunotherapy. Immunol Rev. 2002;188:22–32. DOI: 10.1034/j.1600-065x.2002.18803.x

26. Pegram M, Slamon D. Biological rationale for HER2/neu (c-erbB2) as a target for monoclonal antibody therapy. Semin Oncol. 2000;27:13–19.

27. Ho-Yen CM, Jones JL, Kermorgant S. The clinical and functional significance of c-Met in breast cancer: a review. Breast Cancer Res. 2015;17:52.

28. Fultang N, Illendula A, Lin J, et al. ROR1 regulates chemoresistance in Breast Cancer via modulation of drug efflux pump ABCB1. Sci Rep. 2020;10:1821.

29. Goyette MA, Duhamel S, Aubert L, et al. The Receptor Tyrosine Kinase AXL Is Required at Multiple Steps of the Metastatic Cascade during HER2-Positive Breast Cancer Progression. Cell Rep. 2018;23:1476–1490.

30. Jing X, Liang H, Hao C, et al. Overexpression of MUC1 predicts poor prognosis in patients with breast cancer. Oncol Rep. 2019;41(2):801–810. DOI: 10.3892/or.2018.6887

31. Tang Z, Qian M, Ho M. The role of mesothelin in tumor progression and targeted therapy. Anticancer Agents Med Chem. 2013;13:276–280.

32. Joseph C, Arshad M, Kurozomi S, et al. Overexpression of the cancer stem cell marker CD133 confers a poor prognosis in invasive breast cancer. Breast Cancer Res Treat. 2019;174:387–399.

33. Hu S, Cao M, He Y, et al. CD44v6 Targeted by miR-193b-5p in the Coding Region Modulates the Migration and Invasion of Breast Cancer Cells. J Cancer. 2020;11:260–271.

34. Mal A, Bukhari AB, Singh RK, et al. EpCAM-Mediated Cellular Plasticity Promotes Radiation Resistance and Metastasis in Breast Cancer. Front Cell Dev Biol. 2020;8:597673.

35. Wang X, Wang Y, Yu L, et al. CSPG4 in cancer: multiple roles. Curr Mol Med. 2010;10: 419–429.

36. Zhou Q, Xu J, Xu Y, Sun S, Chen J. Role of ICAM1 in tumor immunity and prognosis of triplenegative breast cancer. Front Immunol. 2023;14:1176647. DOI: 10.3389/fimmu.2023.1176647

37. Byrd TT, Fousek K, Pignata A, et al. TEM8/ANTXR1-Specific CAR T Cells as a Targeted Therapy for Triple-Negative Breast Cancer. Cancer Res. 2018;78:489–500.

38. Chen H, Wei F, Yin M, et al. CD27 enhances the killing effect of CAR T cells targeting trophoblast cell surface antigen 2 in the treatment of solid tumors. Cancer Immunol Immunother. 2021;70(7):2059–2071. DOI: 10.1007/s00262-020-02838-8

39. Ginter PS, McIntire PJ, Cui X, et al. Folate Receptor Alpha Expression Is Associated With Increased Risk of Recurrence in Triple-negative Breast Cancer. Clin Breast Cancer. 2017;17:544–549.

40. Ahmed M, Cheung NK. Engineering anti-GD2 monoclonal antibodies for cancer immunotherapy. FEBS Lett. 2014;588(2):288–297. DOI: 10.1016/j.febslet.2013.11.030

41. Groh V, Rhinehart R, Secrist H, Bauer S, Grabstein KH, Spies T. Broad tumor-associated expression and recognition by tumor-derived gamma delta T cells of MICA and MICB. Proc Natl Acad Sci U S A. 1999;96:6879–6884.

42. Caswell-Jin JL, Lorenz C, Curtis C. Molecular heterogeneity and evolution in breast cancer. Ann Rev Cancer Biol. 2021;5(1):79–94. DOI: 10.1146/annurev-cancerbio-060220-014137

43. Newick K, O’Brien S, Moon E, Albelda SM. CAR T Cell Therapy for Solid Tumors. Annu Rev Med. 2017;68:139–152. DOI: 10.1146/annurev-med-062315-120245

44. Henke E., Nandigama R., Ergun S. Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Front Mol Biosci 2019;6:160. DOI: 10.3389/fmolb.2019.00160

45. Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Nat Med 2013;19(11):1423–1437. DOI: 10.1038/nm.3394

46. Sun L, Gao F, Gao Z,et al. Shed antigen-induced blocking effect on CAR-T cells targeting Glypican-3 in Hepatocellular Carcinoma. J Immunother Cancer. 2021;9(4):e001875. DOI: 10.1136/jitc-2020-001875

47. Mishra A, Maiti R, Mohan P, Gupta P. Antigen loss following CAR-T cell therapy: Mechanisms, implications, and potential solutions. Eur J Haematol. 2024;112(2):211–222. DOI: 10.1111/ejh.14101

48. Jafarzadeh L, Masoumi E, Fallah-Mehrjardi K, Mirzaei HR, Hadjati J. Prolonged Persistence of Chimeric Antigen Receptor (CAR) T Cell in Adoptive Cancer Immunotherapy: Challenges and Ways Forward. Front Immunol. 2020;11:702. DOI: 10.3389/fimmu.2020.00702

49. Schubert ML, Schmitt M, Wang L, et al. Side-effect management of chimeric antigen receptor (CAR) T-cell therapy. Ann Oncol 2021;32(1):34–48. DOI: 10.1016/j.annonc.2020.10.478

50. Huang M., Deng J., Gao L., Zhou J. Innovative strategies to advance CAR T cell therapy for solid tumors. Am J Cancer Res 2020;10(7):1979–1992.

51. Li H, Zhao Y. Increasing the safety and efficacy of chimeric antigen receptor T cell therapy. Protein Cell. 2017;8(8):573–589. DOI: 10.1007/s13238-017-0411-9

52. Павлова А.А., Масчан М.А., Пономарев В.Б. Адоптивная иммунотерапия генетически модифицированными Т-лимфоцитами, экспрессирующими химерные антигенные рецепторы. Онкогематология. 2017;12(1):17–32. DOI: 10.17650/1818-8346-2017-12-1-17-32

53. Zhang H, Ye ZL, Yuan ZG, et al. New Strategies for the Treatment of Solid Tumors with CAR-T Cells. Int J Biol Sci 2016;12(6):718–729. DOI: 10.7150/ijbs.14405

54. Zah E, Lin MY, Silva-Benedict A, et al. T Cells Expressing CD19/CD20 Bispecific Chimeric Antigen Receptors Prevent Anti- gen Escape by Malignant B Cells. Cancer Immunol Res 2016;4(6):498–508. DOI: 10.1158/2326-6066.CIR-15-0231

55. Lohmueller JJ, Ham JD, Kvorjak M, Finn OJ. mSA2 affinity-enhanced biotin-binding CAR T cells for universal tumor targeting. Oncoimmunology. 2017;7(1):e1368604. DOI: 10.1080/2162402X.2017.1368604

56. Crowther MD, Dolton G, Legut M, et al. Genome-wide CRISPR–Cas9 screening reveals ubiquitous T cell cancer targeting via the monomorphic MHC class I-related protein MR1. Nat Immunol. 2020;21:178–185. DOI: 10.1038/s41590-019-0578-8

57. Gherardin NA, McCluskey J, Rossjohn J, Godfrey DI. The diverse family of MR1-restricted T cells. J. Immunol. 2018;201:2862–2871. DOI: 10.4049/jimmunol.1801091

58. Lepore M, Kalinichenko A, Calogero S, et al. Functionally diverse human T cells recognize non-microbial antigens presented by MR1. Elife. 2017;6:e24476. DOI: 10.7554/eLife.24476

59. Chandran SS, Klebanoff CA. T cell receptor-based cancer immunotherapy: emerging efficacy and pathways of resistance. Immunol. Rev. 2019;290:127–147. DOI: 10.1111/imr.12772

60. Wang Z, Wang M, Chen J, et al. MR1-restricted T cells: the new dawn of cancer immunotherapy. Biosci Rep. 2020;40(11):BSR20202962. DOI: 10.1042/BSR20202962

61. Reits EA, Hodge JW, Herberts CA, et al. Radiation modulates the peptide repertoire, enhances MHC class I expression, and induces successful antitumor immunotherapy. J Exp Med. 2006;203(5):1259–1271. DOI: 10.1084/jem.20052494

62. Laplagne C, Domagala M, Le Naour A, et al. Latest advances in targeting the tumor microenvironment for tumor suppression. Int J Mol Sci 2019;20(19):4719. DOI: 10.3390/ijms20194719

63. Murad JP, Tilakawardane D, Park AK, et al. Pre-conditioning modifies the TME to enhance solid tumor CAR T cell efficacy and endogenous protective immunity. Mol Ther. 2021;29(7):2335–2349. DOI:10.1016/j.ymthe.2021.02.024


Рецензия

Для цитирования:


Сорокина Л.Е., Незлина А.М., Красный А.М., Сухих Г.Т. Перспективы применения CAR-T-клеточной терапии при раке молочной железы: взгляд в будущее. Регенерация органов и тканей. 2024;2(2):10-23. https://doi.org/10.60043/2949-5938-2024-2-10-23

For citation:


Sorokina L.E., Nezlina A.L., Krasnyi A.M., Sukhikh G.T. Prospects for the use of CAR-T-cell therapy in breast cancer: A look into the future. Регенерация органов и тканей. 2024;2(2):10-23. (In Russ.) https://doi.org/10.60043/2949-5938-2024-2-10-23

Просмотров: 856


ISSN 2949-5938 (Online)