Preview

Регенерация органов и тканей

Расширенный поиск

Механизмы участия микроРНК эндотелиальных клеток в регуляции ангиогенеза

https://doi.org/10.60043/2949-5938-2024-2-11-32

Аннотация

XX век ознаменовался пониманием того, что более 80% генов имеют дополнительную биологическую функцию в клетке, связанную с регуляцией экспрессии других генов. С таких генов могут экспрессироваться некодирующие регуляторные РНК различного типа, в том числе и микроРНК, способные изменять экспрессию белков в клетке. МикроРНК представляют собой одноцепочечные последовательности РНК длиной 20–25 нуклеотидов, которые регулируют экспрессию генов на посттранскрипционном уровне посредством деградации или репрессии трансляции целевой мРНК. В настоящем обзоре рассмотрены аспекты биогенеза микроРНК в клетках млекопитающих, а также их функции в эндотелиальных клетках и в регуляции ангиогенеза.

Об авторах

П. С. Климович
ФГБОУ ВО «Московский государственный университет имени М.В. Ломоносова»; ФГБУ «Национальный медицинский исследовательский центр кардиологии имени академика Е.И. Чазова» Минздрава России
Россия

Климович Полина Сергеевна - к.б.н., старший научный сотрудник факультета фундаментальной медицины

119192, г. Москва, Ленинские горы, 1

121552 ул. Академика Чазова, 15а, Москва



В. А. Дзреян
ФГБОУ ВО «Московский государственный университет имени М.В. Ломоносова»
Россия

Дзреян Валентина Александровна - к.б.н., научный сотрудник факультета фундаментальной медицины

119192, г. Москва, Ленинские горы, 1



Е. В. Семина
ФГБОУ ВО «Московский государственный университет имени М.В. Ломоносова»
Россия

Семина Екатерина Владимировна - д.б.н., ведущий научный сотрудник факультета фундаментальной медицины

119192, г. Москва, Ленинские горы, 1



К. А. Рубина
ФГБОУ ВО «Московский государственный университет имени М.В. Ломоносова»
Россия

Рубина Ксения Андреевна - д.б.н., заведующая лабораторией морфогенеза и репарации тканей факультета фундаментальной медицины

119192, г. Москва, Ленинские горы, 1



Список литературы

1. Pelletier D, Rivera B, Fabian MR, Foulkes WD. miRNA biogenesis and inherited disorders: clinico-molecular insights. Trends Genet. 2023 May;39(5):401–414. DOI: 10.1016/j.tig.2023.01.009. Epub 2023 Feb 28. PMID: 36863945

2. Jafri I. MiRNA a New Insight in Metabolic and Human Diseases: A Review. Cell Mol Biol (Noisyle-grand). 2023 Aug 31;69(8):102–110. DOI: 10.14715/cmb/2023.69.8.16. PMID: 37715412

3. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004 Jan 23; 116(2):281–297. DOI: 10.1016/s0092-8674(04)00045-5. PMID: 14744438

4. Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature. 2000 Feb 24;403(6772):901–906. DOI: 10.1038/35002607. PMID: 10706289

5. Kozomara A, Birgaoanu M, Griffiths-Jones S. miRBase: from microRNA sequences to function. Nucleic Acids Res. 2019 Jan 8;47(D1):D155–D162. DOI: 10.1093/nar/gky1141. PMID: 30423142; PMCID: PMC6323917

6. Tastsoglou S, Alexiou A, Karagkouni D, Skoufos G, Zacharopoulou E, Hatzigeorgiou AG. DIANA-microT 2023: including predicted targets of virally encoded miRNAs. Nucleic Acids Res. 2023 Jul 5;51(W1):W148–W153. DOI: 10.1093/nar/gkad283. PMID: 37094027; PMCID: PMC10320106

7. Sen CK. MicroRNAs as new maestro conducting the expanding symphony orchestra of regenerative and reparative medicine. Physiol Genomics. 2011 May 1;43(10):517–520. DOI: 10.1152/physiolgenomics.00037.2011. Epub 2011 Apr 5. PMID: 21467158; PMCID: PMC3110892

8. Sun LL, Li WD, Lei FR, Li XQ. The regulatory role of microRNAs in angiogenesis-related diseases. J Cell Mol Med. 2018 Oct;22(10):4568–4587. DOI: 10.1111/jcmm.13700. Epub 2018 Jun 29. PMID: 29956461; PMCID: PMC6156236

9. Wang S, Olson EN. AngiomiRs--key regulators of angiogenesis. Curr Opin Genet Dev. 2009 Jun;19(3):205–211. DOI: 10.1016/j.gde.2009.04.002. Epub 2009 May 14. PMID: 19446450; PMCID: PMC2696563

10. Senger DR, Davis GE. Angiogenesis. Cold Spring Harb Perspect Biol. 2011 Aug 1;3(8):a005090. DOI: 10.1101/cshperspect.a005090. PMID: 21807843; PMCID: PMC3140681

11. Ghafouri-Fard S, Shoorei H, Mohaqiq M, Taheri M. Non-coding RNAs regulate angiogenic processes. Vascul Pharmacol. 2020 Oct-Nov;133-134:106778. DOI: 10.1016/j.vph.2020.106778. Epub 2020 Aug 9. PMID: 32784009

12. Ahmed S, Kurusamy S, David ELS, Khan K, Kalyanakrishnan K, Ian-Gobo M, et al. Aberrant expression of miR-133a in endothelial cells inhibits angiogenesis by reducing pro-angiogenic but increasing anti-angiogenic gene expression. Sci Rep. 2022 Aug 30;12(1):14730. DOI: 10.1038/s41598-022-19172-x. PMID: 36042288; PMCID: PMC9427859

13. Davis PJ, Leinung M., Mousa SA. Anti-Angiogenesis Strategies in Cancer Therapeutics. Academic Press (2017). 194 p, DOI https://doi.org/10.1016/C2014-0-02385-4

14. Bernstein E, Kim SY, Carmell MA, Murchison EP, Alcorn H, Li MZ, et al. Dicer is essential for mouse development. Nat Genet. 2003 Nov;35(3):215–217. DOI: 10.1038/ng1253. Epub 2003 Oct 5. Erratum in: Nat Genet. 2003 Nov;35(3):287. PMID: 14528307

15. Lam B, Nwadozi E, Haas TL, Birot O, Roudier E. High Glucose Treatment Limits Drosha Protein Expression and Alters AngiomiR Maturation in Microvascular Primary Endothelial Cells via an Mdm2-dependent Mechanism. Cells. 2021 Mar 27;10(4):742. DOI: 10.3390/cells10040742. PMID: 33801773; PMCID: PMC8065922

16. Soufi-Zomorrod M, Hajifathali A, Kouhkan F, Mehdizadeh M, Rad SM, Soleimani M. MicroRNAs modulating angiogenesis: miR-129-1 and miR-133 act as angio-miR in HUVECs. Tumour Biol. 2016 Jul;37(7):9527–9534. DOI: 10.1007/s13277-016-4845-0. Epub 2016 Jan 20. PMID: 26790441

17. Malan-Müller S, Hemmings SM, Seedat S. Big effects of small RNAs: a review of microRNAs in anxiety. Mol Neurobiol. 2013 Apr;47(2):726–739. DOI: 10.1007/s12035-012-8374-6. Epub 2012 Nov 13. PMID: 23150170; PMCID: PMC3589626

18. Johnson KC, Johnson ST, Liu J, Chu Y, Arana C, Han Y, et al. Consequences of depleting TNRC6, AGO, and DROSHA proteins on expression of microRNAs. RNA. 2023 Aug;29(8):1166–1184. DOI: 10.1261/rna.079647.123. Epub 2023 May 11. PMID: 37169394; PMCID: PMC10351893

19. Breving K, Esquela-Kerscher A. The complexities of microRNA regulation: mirandering around the rules. Int J Biochem Cell Biol. 2010 Aug;42(8):1316–1329. DOI: 10.1016/j.biocel.2009.09.016. Epub 2009 Sep 30. PMID: 19800023

20. Chan SP, Slack FJ. And now introducing mammalian mirtrons. Dev Cell. 2007 Nov;13(5):605–607. DOI: 10.1016/j.devcel.2007.10.010. PMID: 17981129

21. Nakanishi K. Anatomy of RISC: how do small RNAs and chaperones activate Argonaute proteins? Wiley Interdiscip Rev RNA. 2016 Sep;7(5):637–660. DOI: 10.1002/wrna.1356. Epub 2016 May 16. PMID: 27184117; PMCID: PMC5084781

22. Liu J, Rivas FV, Wohlschlegel J, Yates JR 3rd, Parker R, Hannon GJ. A role for the P-body component GW182 in microRNA function. Nat Cell Biol. 2005 Dec;7(12):1261–1266. DOI: 10.1038/ncb1333. Epub 2005 Nov 13. Erratum in: Nat Cell Biol. 2006 Jan;8(1):100. PMID: 16284623; PMCID: PMC1804202

23. Diao L, Marcais A, Norton S, Chen KC. MixMir: microRNA motif discovery from gene expression data using mixed linear models. Nucleic Acids Res. 2014;42(17):e135. DOI: 10.1093/nar/gku672. Epub 2014 Jul 31. PMID: 25081207; PMCID: PMC4176157

24. Chawla G, Deosthale P, Childress S, Wu YC, Sokol NS. A let-7-to-miR-125 MicroRNA Switch Regulates Neuronal Integrity and Lifespan in Drosophila. PLoS Genet. 2016 Aug 10;12(8): e1006247. DOI: 10.1371/journal.pgen.1006247. PMID: 27508495; PMCID: PMC4979967

25. Sokol NS. Small temporal RNAs in animal development. Curr Opin Genet Dev. 2012 Aug; 22(4):368–373. DOI: 10.1016/j.gde.2012.04.001. Epub 2012 May 9. PMID: 22578317; PMCID: PMC3419770

26. Vasudevan S, Tong Y, Steitz JA. Switching from repression to activation: microRNAs can up-regulate translation. Science. 2007 Dec 21;318(5858):1931–1934. DOI: 10.1126/science.1149460. Epub 2007 Nov 29. PMID: 18048652

27. Janowski BA, Younger ST, Hardy DB, Ram R, Huffman KE, Corey DR. Activating gene expression in mammalian cells with promoter-targeted duplex RNAs. Nat Chem Biol. 2007 Mar;3(3):166–173. DOI: 10.1038/nchembio860. Epub 2007 Jan 28. PMID: 17259978

28. Li LC, Okino ST, Zhao H, Pookot D, Place RF, Urakami S, et al. Small dsRNAs induce transcriptional activation in human cells. Proc Natl Acad Sci USA. 2006 Nov 14;103(46):17337–17342. DOI: 10.1073/pnas.0607015103. Epub 2006 Nov 3. PMID: 17085592; PMCID: PMC1859931

29. Bejerano G, Pheasant M, Makunin I, Stephen S, Kent WJ, Mattick JS, Haussler D. Ultraconserved elements in the human genome. Science. 2004 May 28;304(5675):1321–1325. DOI: 10.1126/science.1098119. Epub 2004 May 6. PMID: 15131266

30. Bozgeyik I. The dark matter of the human genome and its role in human cancers. Gene. 2022 Feb 15;811:146084. DOI: 10.1016/j.gene.2021.146084. Epub 2021 Nov 26. PMID: 34843880

31. Wang K, Zhang S, Weber J, Baxter D, Galas DJ. Export of microRNAs and microRNA-protective protein by mammalian cells. Nucleic Acids Res. 2010 Nov;38(20):7248–7259. DOI: 10.1093/nar/gkq601. Epub 2010 Jul 7. PMID: 20615901; PMCID: PMC2978372

32. Vickers KC, Palmisano BT, Shoucri BM, Shamburek RD, Remaley AT. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat Cell Biol. 2011 Apr;13(4):423–433. DOI: 10.1038/ncb2210. Epub 2011 Mar 20. Erratum in: Nat Cell Biol. 2015 Jan;17(1):104. PMID: 21423178; PMCID: PMC3074610

33. Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007 Jun;9(6):654–659. DOI: 10.1038/ncb1596. Epub 2007 May 7. PMID: 17486113

34. Hergenreider E, Heydt S, Tréguer K, Boettger T, Horrevoets AJ, Zeiher AM, et al. Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs. Nat Cell Biol. 2012 Feb 12;14(3):249–256. DOI: 10.1038/ncb2441. PMID: 22327366

35. Zernecke A, Bidzhekov K, Noels H, Shagdarsuren E, Gan L, Denecke B, et al. Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection. Sci Signal. 2009 Dec 8;2(100):ra81. DOI: 10.1126/scisignal.2000610. PMID: 19996457

36. Salido-Guadarrama I, Romero-Cordoba S, Peralta-Zaragoza O, Hidalgo-Miranda A, Rodríguez-Dorantes M. MicroRNAs transported by exosomes in body fluids as mediators of intercellular communication in cancer. Onco Targets Ther. 2014 Jul 21;7:1327–1338. DOI: 10.2147/OTT.S61562. PMID: 25092989; PMCID: PMC4114916

37. Mayers JR, Audhya A. Vesicle formation within endosomes: An ESCRT marks the spot. Commun Integr Biol. 2012 Jan 1;5(1):50–56. DOI: 10.4161/cib.18208. PMID: 22482010; PMCID: PMC3291314

38. Skog J, Würdinger T, van Rijn S, Meijer DH, Gainche L, Sena-Esteves M, et al. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol. 2008 Dec;10(12):1470–1476. DOI: 10.1038/ncb1800. Epub 2008 Nov 16. PMID: 19011622; PMCID: PMC3423894

39. Shah MY, Calin GA. The mix of two worlds: non-coding RNAs and hormones. Nucleic Acid Ther. 2013 Feb;23(1):2–8. DOI: 10.1089/nat.2012.0375. Epub 2012 Oct 10. PMID: 23051203; PMCID: PMC3569955

40. Ji X, Takahashi R, Hiura Y, Hirokawa G, Fukushima Y, Iwai N. Plasma miR-208 as a biomarker of myocardial injury. Clin Chem. 2009 Nov;55(11):1944–1949. DOI: 10.1373/clinchem.2009.125310. Epub 2009 Aug 20. PMID: 19696117

41. Arroyo JD, Chevillet JR, Kroh EM, Ruf IK, Pritchard CC, Gibson DF, et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci USA. 2011 Mar 22;108(12):5003–5008. DOI: 10.1073/pnas.1019055108. Epub 2011 Mar 7. PMID: 21383194; PMCID: PMC3064324

42. Yang WJ, Yang DD, Na S, Sandusky GE, Zhang Q, Zhao G. Dicer is required for embryonic angiogenesis during mouse development. J Biol Chem. 2005 Mar 11;280(10):9330–9335. DOI: 10.1074/jbc.M413394200. Epub 2004 Dec 21. PMID: 15613470

43. Suárez Y, Fernández-Hernando C, Yu J, Gerber SA, Harrison KD, Pober JS, et al. Dicerdependent endothelial microRNAs are necessary for postnatal angiogenesis. Proc Natl Acad Sci U S A. 2008 Sep 16;105(37):14082–14087. DOI: 10.1073/pnas.0804597105. Epub 2008 Sep 8. PMID: 18779589; PMCID: PMC2544582

44. Rajewsky K, Gu H, Kühn R, Betz UA, Müller W, Roes J, Schwenk F. Conditional gene targeting. J Clin Invest. 1996 Aug 1;98(3):600–603. DOI: 10.1172/JCI118828. PMID: 8698848; PMCID: PMC507466

45. Cobb BS, Nesterova TB, Thompson E, Hertweck A, O’Connor E, Godwin J, et al. T cell lineage choice and differentiation in the absence of the RNase III enzyme Dicer. J Exp Med. 2005 May 2;201(9):1367–1373. DOI: 10.1084/jem.20050572. PMID: 15867090; PMCID: PMC2213187

46. Kisanuki YY, Hammer RE, Miyazaki J, Williams SC, Richardson JA, Yanagisawa M. Tie2-Cre transgenic mice: a new model for endothelial cell-lineage analysis in vivo. Dev Biol. 2001 Feb 15;230(2):230–242. DOI: 10.1006/dbio.2000.0106. PMID: 11161575

47. Monvoisin A, Alva JA, Hofmann JJ, Zovein AC, Lane TF, Iruela-Arispe ML. VE-cadherin-CreERT2 transgenic mouse: a model for inducible recombination in the endothelium. Dev Dyn. 2006 Dec;235(12):3413–3422. DOI: 10.1002/dvdy.20982. PMID: 17072878

48. Wei Y, Schober A, Weber C. Pathogenic arterial remodeling: the good and bad of micro-RNAs. Am J Physiol Heart Circ Physiol. 2013 Apr 15;304(8):H1050–H1059. DOI: 10.1152/ajpheart.00267.2012. Epub 2013 Feb 8. PMID: 23396454

49. Kuehbacher A, Urbich C, Zeiher AM, Dimmeler S. Role of Dicer and Drosha for endothelial microRNA expression and angiogenesis. Circ Res. 2007 Jul 6;101(1):59–68. DOI: 10.1161/CIRCRESAHA.107.153916. Epub 2007 May 31. PMID: 17540974

50. Poliseno L, Tuccoli A, Mariani L, Evangelista M, Citti L, Woods K, et al. MicroRNAs modulate the angiogenic properties of HUVECs. Blood. 2006 Nov 1;108(9):3068–3071. DOI: 10.1182/blood-2006-01-012369. Epub 2006 Jul 18. PMID: 16849646

51. Chamorro-Jorganes A, Lee MY, Araldi E, Landskroner-Eiger S, Fernández-Fuertes M, Sahraei M, et al. VEGF-Induced Expression of miR-17-92 Cluster in Endothelial Cells Is Mediated by ERK/ELK1 Activation and Regulates Angiogenesis. Circ Res. 2016 Jan 8;118(1):38–47. DOI: 10.1161/CIRCRESAHA.115.307408. Epub 2015 Oct 15. PMID: 26472816; PMCID: PMC4703066

52. Amini S, Abak A, Sakhinia E, Abhari A. MicroRNA-221 and MicroRNA-222 in Common Human Cancers: Expression, Function, and Triggering of Tumor Progression as a Key Modulator. Lab Med. 2019 Oct 10;50(4):333–347. DOI: 10.1093/labmed/lmz002. PMID: 31049571

53. Chistiakov DA, Orekhov AN, Bobryshev YV. The role of miR-126 in embryonic angiogenesis, adult vascular homeostasis, and vascular repair and its alterations in atherosclerotic disease. J Mol Cell Cardiol. 2016 Aug;97:47–55. DOI: 10.1016/j.yjmcc.2016.05.007. Epub 2016 May 12. PMID: 27180261

54. Wang S, Aurora AB, Johnson BA, Qi X, McAnally J, Hill JA, et al. The endothelial-specific micro-RNA miR-126 governs vascular integrity and angiogenesis. Dev Cell. 2008 Aug;15(2):261–271. DOI: 10.1016/j.devcel.2008.07.002. PMID: 18694565; PMCID: PMC2685763

55. Campagnolo L, Leahy A, Chitnis S, Koschnick S, Fitch MJ, Fallon JT, et al. EGFL7 is a chemoattractant for endothelial cells and is up-regulated in angiogenesis and arterial injury. Am J Pathol. 2005 Jul;167(1):275–284. DOI: 10.1016/S0002-9440(10)62972-0. PMID: 15972971; PMCID: PMC1451775

56. Soncin F, Mattot V, Lionneton F, Spruyt N, Lepretre F, Begue A, Stehelin D. VE-statin, an endothelial repressor of smooth muscle cell migration. EMBO J. 2003 Nov 3;22(21):5700–5711. DOI: 10.1093/emboj/cdg549. PMID: 14592969; PMCID: PMC275406

57. Kuhnert F, Mancuso MR, Hampton J, Stankunas K, Asano T, Chen CZ, Kuo CJ. Attribution of vascular phenotypes of the murine Egfl7 locus to the microRNA miR-126. Development. 2008 Dec;135(24):3989–3993. DOI: 10.1242/dev.029736. Epub 2008 Nov 5. PMID: 18987025

58. Fish JE, Santoro MM, Morton SU, Yu S, Yeh RF, Wythe JD, et al. miR-126 regulates angiogenic signaling and vascular integrity. Dev Cell. 2008 Aug;15(2):272–284. DOI: 10.1016/j.devcel.2008.07.008. PMID: 18694566; PMCID: PMC2604134

59. Lu W, Du X, Zou S, Fang Q, Wu M, Li H, Shi B. IFN-γ enhances the therapeutic efficacy of MSCsderived exosome via miR-126-3p in diabetic wound healing by targeting SPRED1. J Diabetes. 2024 Jan;16(1):e13465. DOI: 10.1111/1753-0407.13465. Epub 2023 Aug 30. PMID: 37646268; PMCID: PMC10809290

60. Zhang J, Zhang Z, Zhang DY, Zhu J, Zhang T, Wang C. microRNA 126 inhibits the transition of endothelial progenitor cells to mesenchymal cells via the PIK3R2-PI3K/Akt signalling pathway. PLoS One. 2013 Dec 13;8(12):e83294. DOI: 10.1371/journal.pone.0083294. PMID: 24349482; PMCID: PMC3862723

61. Nicoli S, Standley C, Walker P, Hurlstone A, Fogarty KE, Lawson ND. MicroRNA-mediated integration of haemodynamics and Vegf signalling during angiogenesis. Nature. 2010 Apr 22; 464(7292):1196–1200. DOI: 10.1038/nature08889. Epub 2010 Apr 4. Erratum in: Nature. 2010 Sep 16;467(7313):356. PMID: 20364122; PMCID: PMC2914488

62. Kumar S, Kim CW, Simmons RD, Jo H. Role of flow-sensitive microRNAs in endothelial dysfunction and atherosclerosis: mechanosensitive athero-miRs. Arterioscler Thromb Vasc Biol. 2014 Oct;34(10):2206–2216. DOI: 10.1161/ATVBAHA.114.303425. Epub 2014 Jul 10. PMID: 25012134; PMCID: PMC4169332

63. Kobus K, Kopycinska J, Kozlowska-Wiechowska A, Urasinska E, Kempinska-Podhorodecka A, Haas TL, et al. Angiogenesis within the duodenum of patients with cirrhosis is modulated by mechanosensitive Kruppel-like factor 2 and microRNA-126. Liver Int. 2012 Sep;32(8):1222–1232. DOI: 10.1111/j.1478-3231.2012.02791.x. Epub 2012 May 10. PMID: 22574900

64. Harris TA, Yamakuchi M, Ferlito M, Mendell JT, Lowenstein CJ. MicroRNA-126 regulates endothelial expression of vascular cell adhesion molecule 1. Proc Natl Acad Sci USA. 2008 Feb 5;105(5):1516–1521. DOI: 10.1073/pnas.0707493105. Epub 2008 Jan 28. PMID: 18227515; PMCID: PMC2234176

65. Asgeirsdóttir SA, van Solingen C, Kurniati NF, Zwiers PJ, Heeringa P, van Meurs M, et al. MicroRNA-126 contributes to renal microvascular heterogeneity of VCAM-1 protein expression in acute inflammation. Am J Physiol Renal Physiol. 2012 Jun 15;302(12):F1630–1639. DOI: 10.1152/ajprenal.00400.2011. Epub 2012 Mar 14. PMID: 22419694

66. Yue S, Shi H, Han J, Zhang T, Zhu W, Zhang D. Prognostic value of microRNA-126 and CRK expression in gastric cancer. Onco Targets Ther. 2016 Oct 11;9:6127–6135. DOI: 10.2147/OTT.S87778. PMID: 27785060; PMCID: PMC5066993

67. Tang X, Chen Y, Luo H, Bian Q, Weng B, Yang A, et al. miR-126 Controls the Apoptosis and Proliferation of Immature Porcine Sertoli Cells by Targeting the PIK3R2 Gene through the PI3K/AKT Signaling Pathway. Animals (Basel). 2021 Jul 30;11(8):2260. DOI: 10.3390/ani11082260. PMID: 34438716; PMCID: PMC8388524

68. Miko E, Margitai Z, Czimmerer Z, Várkonyi I, Dezso B, Lányi A, et al. miR-126 inhibits proliferation of small cell lung cancer cells by targeting SLC7A5. FEBS Lett. 2011 Apr 20; 585(8):1191–1196. DOI: 10.1016/j.febslet.2011.03.039. Epub 2011 Mar 23. PMID: 21439283

69. Zhou J, Li YS, Nguyen P, Wang KC, Weiss A, Kuo YC, et al. Regulation of vascular smooth muscle cell turnover by endothelial cell-secreted microRNA-126: role of shear stress. Circ Res. 2013 Jun 21;113(1):40–51. DOI: 10.1161/CIRCRESAHA.113.280883. Epub 2013 Apr 19. PMID: 23603512; PMCID: PMC3772783

70. Schober A, Nazari-Jahantigh M, Wei Y, Bidzhekov K, Gremse F, Grommes J, et al. MicroRNA-126-5p promotes endothelial proliferation and limits atherosclerosis by suppressing Dlk1. Nat Med. 2014 Apr;20(4):368–376. DOI: 10.1038/nm.3487. Epub 2014 Mar 2. PMID: 24584117; PMCID: PMC4398028

71. Li P, Yin YL, Guo T, Sun XY, Ma H, Zhu ML, et al. Inhibition of Aberrant MicroRNA-133a Expression in Endothelial Cells by Statin Prevents Endothelial Dysfunction by Targeting GTP Cyclohydrolase 1 in Vivo. Circulation. 2016 Nov 29;134(22):1752–1765. DOI: 10.1161/CIRCULATIONAHA.116.017949. Epub 2016 Oct 20. PMID: 27765794; PMCID: PMC5120771

72. Chen L, Liu C, Sun D, Wang T, Zhao L, Chen W, et al. MicroRNA-133a impairs perfusion recovery after hindlimb ischemia in diabetic mice. Biosci Rep. 2018 Jul 2;38(4):BSR20180346. DOI: 10.1042/BSR20180346. PMID: 29789398; PMCID: PMC6028757

73. Zhu W, Sun L, Zhao P, Liu Y, Zhang J, Zhang Y, et al. Macrophage migration inhibitory factor facilitates the therapeutic efficacy of mesenchymal stem cells derived exosomes in acute myocardial infarction through upregulating miR-133a-3p. J Nanobiotechnology. 2021 Feb 27; 19(1):61. DOI: 10.1186/s12951-021-00808-5. PMID: 33639970; PMCID: PMC7916292

74. Nikolajevic J, Ariaee N, Liew A, Abbasnia S, Fazeli B, Sabovic M. The Role of MicroRNAs in Endothelial Cell Senescence. Cells. 2022 Mar 31;11(7):1185. DOI: 10.3390/cells11071185. PMID: 35406749; PMCID: PMC8997793

75. Menghini R, Casagrande V, Cardellini M, Martelli E, Terrinoni A, Amati F, et al. Micro-RNA 217 modulates endothelial cell senescence via silent information regulator 1. Circulation. 2009 Oct 13;120(15):1524–1532. DOI: 10.1161/CIRCULATIONAHA.109.864629. Epub 2009 Sep 28. PMID: 19786632

76. Rysenkova KD, Troyanovskiy KE, Klimovich PS, Bulyakova TR, Shelomentseva EM, Shmakova AA, et al. Identification of a Novel Small RNA Encoded in the Mouse Urokinase Receptor uPAR Gene (Plaur) and Its Molecular Target Mef2d. Front Mol Neurosci. 2022 Jul 6;15:865858. DOI: 10.3389/fnmol.2022.865858. PMID: 35875662; PMCID: PMC9298986

77. Larusch GA, Merkulova A, Mahdi F, Shariat-Madar Z, Sitrin RG, Cines DB, Schmaier AH. Domain 2 of uPAR regulates single-chain urokinase-mediated angiogenesis through β1-integrin and VEGFR2. Am J Physiol Heart Circ Physiol. 2013 Aug 1;305(3):H305–H320. DOI: 10.1152/ajpheart.00110.2013. Epub 2013 May 24. PMID: 23709605; PMCID: PMC3742872

78. Semina E, Rubina K, Sysoeva V, Rysenkova K, Klimovich P, Plekhanova O, Tkachuk V. Urokinase and urokinase receptor participate in regulation of neuronal migration, axon growth and branching. Eur J Cell Biol. 2016 Sep;95(9):295–310. DOI: 10.1016/j.ejcb.2016.05.003. Epub 2016 Jun 3. PMID: 27324124

79. Klimovich PS, Semina EV, Karagyaur MN, Rysenkova KD, Sysoeva VY, Mironov NA, et al. Urokinase receptor regulates nerve regeneration through its interaction with α5β1-integrin. Biomed Pharmacother. 2020 May;125:110008. DOI: 10.1016/j.biopha.2020.110008. Epub 2020 Feb 28. PMID: 32187956

80. Rysenkova KD, Klimovich PS, Shmakova AA, Karagyaur MN, Ivanova KA, Aleksandrushkina NA, et al. Urokinase receptor deficiency results in EGFR-mediated failure to transmit signals for cell survival and neurite formation in mouse neuroblastoma cells. Cell Signal. 2020 Nov;75:109741. DOI: 10.1016/j.cellsig.2020.109741. Epub 2020 Aug 18. PMID: 32822758

81. Dzhauari S, Litvinova S, Efimenko A, Aleksandrushkina N, Basalova N, Abakumov M, et al. Urokinase-Type Plasminogen Activator Enhances the Neuroprotective Activity of Brain-Derived Neurotrophic Factor in a Model of Intracerebral Hemorrhage. Biomedicines. 2022 Jun 8;10(6):1346. DOI: 10.3390/biomedicines10061346. PMID: 35740368; PMCID: PMC9220139

82. Shmakova A, Balatskiy A, Kulebyakina M., et al. Urokinase Receptor uPAR Overexpression in Mouse Brain Stimulates the Migration of Neurons into the Cortex during Embryogenesis. Russ J Dev Biol 2021;52:53–63. DOI: 10.1134/S1062360421010069

83. Karagyaur M, Dyikanov D, Makarevich P, Semina E, Stambolsky D, Plekhanova O, et al. Non-viral transfer of BDNF and uPA stimulates peripheral nerve regeneration. Biomed Pharmacother. 2015 Aug;74:63–70. DOI: 10.1016/j.biopha.2015.07.002. Epub 2015 Jul 28. PMID: 26349964

84. Prager GW, Breuss JM, Steurer S, Mihaly J, Binder BR. Vascular endothelial growth factor (VEGF) induces rapid prourokinase (pro-uPA) activation on the surface of endothelial cells. Blood. 2004 Feb 1;103(3):955–962. DOI: 10.1182/blood-2003-07-2214. Epub 2003 Oct 2. PMID: 14525763

85. Dergilev KV, Beloglazova IB, Tsokolaeva ZI, Vasilets YD, Parfenova EV. Deficiency of Urokinase-Type Plasminogen Activator Receptor Is Associated with the Development of Perivascular Fibrosis in Mouse Heart. Bull Exp Biol Med. 2022 May;173(1):5–9. DOI: 10.1007/s10517-022-05480-9. Epub 2022 May 27. PMID: 35622258

86. Kjaergaard M, Hansen LV, Jacobsen B, Gardsvoll H, Ploug M. Structure and ligand interactions of the urokinase receptor (uPAR). Front Biosci. 2008 May 1;13:5441–5461. DOI: 10.2741/3092. PMID: 18508598

87. Chu Y, Kilikevicius A, Liu J, Johnson KC, Yokota S, Corey DR. Argonaute binding within 3’-untranslated regions poorly predicts gene repression. Nucleic Acids Res. 2020 Jul 27; 48(13):7439–7453. DOI: 10.1093/nar/gkaa478. PMID: 32501500; PMCID: PMC7367155

88. Faezeh Jame-Chenarboo, Hoi Hei Ng, Dawn Macdonald, Lara K. Mahal. miRNA upregulate protein and glycan expression via direct activation in proliferating cells. bioRxiv. 2022.04.01.486772; doi: https://doi.org/10.1101/2022.04.01.486772

89. Basalova N. et al. Mesenchymal stromal cells facilitate resolution of pulmonary fibrosis by miR-29c and miR-129 intercellular transfer. Exp Mol Med. 2023 Jul;55(7):1399–1412. DOI: 10.1038/s12276-023-01017-w. Epub 2023 Jul 3. PMID: 37394579; PMCID: PMC10393964

90. Kanugula AK, Adapala RK, Guarino BD, Bhavnani N, Dudipala H, Paruchuri S, Thodeti CK. Studying Angiogenesis Using Matrigel In Vitro and In Vivo. Methods Mol Biol. 2024;2711:105–116. DOI: 10.1007/978-1-0716-3429-5_9. PMID: 37776452

91. Mehta V, Mahmoud M. Ex Vivo Mouse Aortic Ring Angiogenesis Assay. Methods Mol Biol. 2022;2475:229–238. DOI: 10.1007/978-1-0716-2217-9_17. PMID: 35451762

92. Vestweber D. VE-cadherin: the major endothelial adhesion molecule controlling cellular junctions and blood vessel formation. Arterioscler Thromb Vasc Biol. 2008 Feb;28(2):223–232. DOI: 10.1161/ATVBAHA.107.158014. Epub 2007 Dec 27. PMID: 18162609

93. Nicosia RF. The aortic ring model of angiogenesis: a quarter century of search and discovery. J Cell Mol Med. 2009 Oct;13(10):4113–4136. DOI: 10.1111/j.1582-4934.2009.00891.x. Epub 2009 Sep 1. PMID: 19725916; PMCID: PMC4496118

94. Celluzzi A, Paolini A, D’Oria V, Risoluti R, Materazzi S, Pezzullo M, et al. Biophysical and biological contributions of polyamine-coated carbon nanotubes and bidimensional buckypapers in the delivery of miRNAs to human cells. Int J Nanomedicine. 2017 Dec 18;13:1–18. DOI: 10.2147/IJN.S144155. Erratum in: Int J Nanomedicine. 2018 Jun 27;13:3729. DOI: 10.2147/IJN.S172673. PMID: 29296082; PMCID: PMC5739113

95. Masotti A, Miller MR, Celluzzi A, Rose L, Micciulla F, Hadoke PW, et al. Regulation of angiogenesis through the efficient delivery of microRNAs into endothelial cells using polyamine-coated carbon nanotubes. Nanomedicine. 2016 Aug;12(6):1511–1522. DOI: 10.1016/j.nano.2016.02.017. Epub 2016 Mar 22. PMID: 27013131; PMCID: PMC4949379

96. Aday S, Hazan-Halevy I, Chamorro-Jorganes A, Anwar M, Goldsmith M, Beazley-Long N, et al. Bioinspired artificial exosomes based on lipid nanoparticles carrying let-7b-5p promote angiogenesis in vitro and in vivo. Mol Ther. 2021 Jul 7;29(7):2239–2252. DOI: 10.1016/ j.ymthe.2021.03.015. Epub 2021 Mar 18. PMID: 33744469; PMCID: PMC8261169

97. Sadowska JM, Ziminska M, Ferreira C, Matheson A, Balouch A, Bogle J, et al. Development of miR-26a-activated scaffold to promote healing of critical-sized bone defects through angiogenic and osteogenic mechanisms. Biomaterials. 2023 Dec;303:122398. DOI: 10.1016/j.biomaterials.2023.122398. Epub 2023 Nov 13. PMID: 37979514

98. Xiong QH, Zhao L, Wan GQ, Hu YG, Li XL. Engineered BMSCs-Derived Exosomal miR-542-3p Promotes Cutaneous Wound Healing. Endocr Metab Immune Disord Drug Targets. 2023;23(3):336–346. DOI: 10.2174/1871530322666220523151713. PMID: 35616673

99. Murata K, Ito H, Yoshitomi H, Yamamoto K, Fukuda A, Yoshikawa J, et al. Inhibition of miR-92a enhances fracture healing via promoting angiogenesis in a model of stabilized fracture in young mice. J Bone Miner Res. 2014 Feb;29(2):316–326. DOI: 10.1002/jbmr.2040. PMID: 23857760

100. Ding MH, Lozoya EG, Rico RN, Chew SA. The Role of Angiogenesis-Inducing microRNAs in Vascular Tissue Engineering. Tissue Eng Part A. 2020 Dec;26(23–24):1283–1302. DOI: 10.1089/ten.TEA.2020.0170. Epub 2020 Oct 1. PMID: 32762306

101. Bonauer A, Boon RA, Dimmeler S. Vascular microRNAs. Curr Drug Targets. 2010 Aug; 11(8):943–49. DOI: 10.2174/138945010791591313. PMID: 20415654

102. Suárez Y, Fernández-Hernando C, Pober JS, Sessa WC. Dicer dependent microRNAs regulate gene expression and functions in human endothelial cells. Circ Res. 2007 Apr 27;100(8):1164–1173. DOI: 10.1161/01.RES.0000265065.26744.17. Epub 2007 Mar 22. PMID: 17379831

103. Weber M, Baker MB, Moore JP, Searles CD. MiR-21 is induced in endothelial cells by shear stress and modulates apoptosis and eNOS activity. Biochem Biophys Res Commun. 2010 Mar 19; 393(4):643–648. DOI: 10.1016/j.bbrc.2010.02.045. Epub 2010 Feb 12. PMID: 20153722; PMCID: PMC3717387

104. Yang P, Cai L, Zhang G, Bian Z, Han G. The role of the miR-17-92 cluster in neurogenesis and angiogenesis in the central nervous system of adults. J Neurosci Res. 2017 Aug;95(8):1574–1581. DOI: 10.1002/jnr.23991. Epub 2016 Nov 21. PMID: 27869313

105. Qin X, Wang X, Wang Y, Tang Z, Cui Q, Xi J, et al. MicroRNA-19a mediates the suppressive effect of laminar flow on cyclin D1 expression in human umbilical vein endothelial cells. Proc Natl Acad Sci USA. 2010 Feb 16;107(7):3240–3244. DOI: 10.1073/pnas.0914882107. Epub 2010 Jan 27. PMID: 20133739; PMCID: PMC2840357

106. Olivieri F, Lazzarini R, Recchioni R, Marcheselli F, Rippo MR, Di Nuzzo S, et al. Procopio AD. MiR-146a as marker of senescence-associated pro-inflammatory status in cells involved in vascular remodelling. Age (Dordr). 2013 Aug;35(4):1157–1172. DOI: 10.1007/s11357-012-9440-8. Epub 2012 Jun 13. PMID: 22692818; PMCID: PMC3705128

107. Li J, Zhang Y, Zhao Q, Wang J, He X. MicroRNA-10a Influences Osteoblast Differentiation and Angiogenesis by Regulating β-Catenin Expression. Cell Physiol Biochem. 2015;37(6):2194–2208. DOI: 10.1159/000438576. Epub 2015 Nov 27. PMID: 26610149

108. Zhu S, Deng S, Ma Q, Zhang T, Jia C, Zhuo D, et al. MicroRNA-10A* and MicroRNA-21 modulate endothelial progenitor cell senescence via suppressing high-mobility group A2. Circ Res. 2013 Jan 4;112(1):152–164. DOI: 10.1161/CIRCRESAHA.112.280016. Epub 2012 Oct 16. PMID: 23072816; PMCID: PMC3719009

109. Grundmann S, Hans FP, Kinniry S, Heinke J, Helbing T, Bluhm F, et al. MicroRNA-100 regulates neovascularization by suppression of mammalian target of rapamycin in endothelial and vascular smooth muscle cells. Circulation. 2011 Mar 8;123(9):999–1009. DOI: 10.1161/CIRCULATIONAHA.110.000323. Epub 2011 Feb 21. PMID: 21339483

110. Zhou Q, Gallagher R, Ufret-Vincenty R, Li X, Olson EN, Wang S. Regulation of angiogenesis and choroidal neovascularization by members of microRNA-23~27~24 clusters. Proc Natl Acad Sci USA. 2011 May 17;108(20):8287–8292. DOI: 10.1073/pnas.1105254108. Epub 2011 May 2. PMID: 21536891; PMCID: PMC3100947


Рецензия

Для цитирования:


Климович П.С., Дзреян В.А., Семина Е.В., Рубина К.А. Механизмы участия микроРНК эндотелиальных клеток в регуляции ангиогенеза. Регенерация органов и тканей. 2024;2(2):59-81. https://doi.org/10.60043/2949-5938-2024-2-11-32

For citation:


Klimovich P.S., Dzreyan V.A., Semina E.V., Rubina K.A. Endothelial cells microRNAs participation in the angiogenesis regulation. Регенерация органов и тканей. 2024;2(2):59-81. (In Russ.) https://doi.org/10.60043/2949-5938-2024-2-11-32

Просмотров: 849


ISSN 2949-5938 (Online)