Creation and characterization of human mesenchymal stromal cell cultures with prolonged proliferative potential for the tasks of regenerative medicine
https://doi.org/10.60043/2949-5938-2024-2-24-45
Abstract
The study of molecular mechanisms of regeneration requires convenient models for in vitro and in vivo studies. In vitro cell cultures can fulfill such a function. However, their rapid aging and loss of initial specific properties in culture is a significant limitation of their use. Telomerase expression can help to overcome these limitations: it can prolong proliferative activity and stabilize the initial properties of a primary cell culture. Here, we created and studied the properties of human adipose tissue multipotent mesenchymal stromal cell (MSC) cultures that overexpress the catalytic protein subunit of human telomerase ( hTERT). We found that these MSC cultures were able to proliferate up to 38–63 PD, kept sensitivity to noradrenaline, serotonin, glutamate, γ-aminobutyric acid, parathyroid hormone, angiotensin II and histamine until at least 26 PD, retained MSC-specific immunophenotype until at least 36 PD, and preserved the ability to adipogenic, osteogenic and chondrogenic differentiation until at least 39 PD. Moreover, overexpression of hTERT in MSC cultures stabilized the qualitative and quantitative composition of their secretome at long-term passaging (at least up to 30 PD). The obtained results allow us to consider telomerase hyperexpression as a promising approach to obtaining MSC cultures with prolonged proliferative activity, which can be used as a stable and convenient object for fundamental and applied studies in the field of regenerative medicine.
Keywords
About the Authors
A. L. PrimakRussian Federation
Alexandra L. Primak - post-graduate researcher, Laboratory Researcher, Laboratory of Gene and Cell Technologies
119192, Lomonosovsky prospect, 27/1, Moscow
N. I. Kalinina
Russian Federation
Natalia I. Kalinina - Cand. Sci. (Biology), Leading Researcher, Laboratory of Gene and Cell Technologies
119192, Lomonosovsky prospect, 27/1, Moscow
M. N. Skryabina
Russian Federation
Maria N. Skryabina - student
119192, Lomonosovsky prospect, 27/1, Moscow
V. A. Usachev
Russian Federation
Vladimir A. Usachev - phD student, Laboratory Assistant, Laboratory of Translational Medicine
119192, Lomonosovsky prospect, 27/1, Moscow
V. I. Chechekhin
Russian Federation
Vadim I. Chechekhin - Cand. Sci. (Biology), Junior Researcher, Laboratory of Gene and Cell Technologies
119192, Lomonosovsky prospect, 27/1, Moscow
M. A. Vigovskiy
Russian Federation
Maksim A. Vigovskiy - phD student, Laboratory Assistant, Laboratory of Tissue Repair and
Regeneration, Institute for Regenerative Medicine
119192, Lomonosovsky prospect, 27/1, Moscow
E. S. Chechekhina
Russian Federation
Elizaveta S. Chechekhina - phD student, Laboratory Assistant, Department of Biochemistry and Regenerative Biomedicine
119192, Lomonosovsky prospect, 27/1, Moscow
N. S. Voloshin
Russian Federation
Nikita S. Voloshin - phD student, Laboratory Assistant, Department of Biochemistry and Regenerative Biomedicine
119192, Lomonosovsky prospect, 27/1, Moscow
K. Yu. Kulebyakin
Russian Federation
Konstantin Yu. Kulebyakin - Cand. Sci. (Biology), Associate Professor, Department of Biochemistry and Regenerative Biomedicine
119192, Lomonosovsky prospect, 27/1, Moscow
M. A. Kulebyakina
Russian Federation
Maria A. Kulebyakina - phD student, Junior Researcher, Laboratory of Gene and Cell Technologies
119192, Lomonosovsky prospect, 27/1, Moscow
O. A. Grigorieva
Russian Federation
Olga A. Grigorieva - Cand. Sci. (Biology), Research Associate, Laboratory of Tissue Repair and Regeneration
119192, Lomonosovsky prospect, 27/1, Moscow
P. A. Tyurin-Kuzmin
Russian Federation
Pyotr A. Tyurin-Kuzmin - Cand. Sci. (Biology), Associate Professor
119192, Lomonosovsky prospect, 27/1, Moscow
T. K. Yakovleva
Russian Federation
Tatiana K. Yakovleva - Cand. Sci. (Biology), Senior Researcher, Laboratory of Cell Morphology
194064, Tikhoretsky prospect, 4, St. Petersburg
V. I. Turilova
Russian Federation
Victoria I. Turylova - Leading Engineer, Laboratory of Cell Morphology
194064, Tikhoretsky prospect, 4, St. Petersburg
E. I. Shagimardanova
Russian Federation
Elena I. Shagimardanova - Cand. Sci. (Biology), Leading Researcher
420012, K. Marx str, 76, Kazan
G. R. Gazizova
Russian Federation
Guzel R. Gazizova - Researcher
420012, K. Marx str, 76, Kazan
N. A. Basalova
Russian Federation
Natalia A. Basalova - Cand. Sci. (Biology), Junior Researcher
119192, Lomonosovsky prospect, 27/1, Moscow
A. Yu. Efimenko
Russian Federation
Anastasia Yu. Efimenko - Cand. Sci. (Medicine), Head of Laboratory
119192, Lomonosovsky prospect, 27/1, Moscow
S. S. Dzhauari
Russian Federation
Stalik S. Dzhauari - post-graduate researcher, Laboratory Researcher, Laboratory of Gene and Cell Technologies
119192, Lomonosovsky prospect, 27/1, Moscow
Yu. G. Antropova
Russian Federation
Yulia G. Antropova - Cand. Sci. (Biology), Senior Researcher, Department of Biochemistry and Regenerative Biomedicine
119192, Lomonosovsky prospect, 27/1, Moscow
I. V. Plyushchii
Russian Federation
Ivan V. Plyushchiy - Master’s Student, Department of Biochemistry and Regenerative Biomedicine
119192, Lomonosovsky prospect, 27/1, Moscow
Zh. A. Akopyan
Russian Federation
Zhanna A. Akopyan - Cand. Sci. (Medicine), Deputy Director; Head of the Department
119192, Lomonosovsky prospect, 27/1, Moscow
V. Yu. Sysoeva
Russian Federation
Veronika Yu. Sysoeva - Cand. Sci. (Biology), Leading Researcher, Laboratory of Morphogenesis and Tissue Repair
119192, Lomonosovsky prospect, 27/1, Moscow
V. A. Tkachuk
Russian Federation
Vsevolod A. Tkachuk - Academician of the Russian Academy of Sciences, Director
119192, Lomonosovsky prospect, 27/1, Moscow
M. N. Karagyaur
Russian Federation
Maxim N. Karagyaur - Cand. Sci. (Biology), Senior Researcher; Associate Professor
119192, Lomonosovsky prospect, 27/1, Moscow
References
1. Varier P, Raju G, Madhusudanan P, Jerard C, Shankarappa SA. A Brief Review of In Vitro Models for Injury and Regeneration in the Peripheral Nervous System. Int J Mol Sci. 2022;23(2):816. DOI: 10.3390/ijms23020816
2. Karagyaur M, Primak A, Efimenko A, Skryabina M, Tkachuk V. The Power of Gene Technologies: 1001 Ways to Create a Cell Model. Cells. 2022;11(20):3235. DOI: 10.3390/cells11203235
3. Voloshin N, Tyurin-Kuzmin P, Karagyaur M, Akopyan Z, Kulebyakin K. Practical Use of Immortalized Cells in Medicine: Current Advances and Future Perspectives. Int J Mol Sci. 2023;24(16):12716. DOI: 10.3390/ijms241612716
4. Lenz LS, Wink MR. The other side of the coin: mesenchymal stromal cell immortalization beyond evasion of senescence. Hum Cell. 2023;36(5):1593–1603. DOI: 10.1007/s13577-023-00925-3
5. Basalova N, Illarionova M, Skryabina M, Vigovskiy M, Tolstoluzhinskaya A, Primak A, et al. Advances and Obstacles in Using CRISPR/Cas9 Technology for Non-Coding RNA Gene Knockout in Human Mesenchymal Stromal Cells. Noncoding RNA. 2023;9(5):49. DOI: 10.3390/ncrna9050049
6. Hahn WC. Immortalization and transformation of human cells. Mol Cells. 2002;13(3):351–361, DOI: 10.1016/S1016-8478(23)15045-X
7. Meltzer PS, Guan XY, Trent JM. Telomere capture stabilizes chromosome breakage. Nat Genet. 1993;4(3):252–255. DOI: 10.1038/ng0793-252
8. Richter M, Piwocka O, Musielak M, Piotrowski I, Suchorska WM, Trzeciak T. From Donor to the Lab: A Fascinating Journey of Primary Cell Lines. Front Cell Dev Biol. 2021;9:711381. DOI: 10.3389/fcell.2021.711381
9. Longo PA, Kavran JM, Kim MS, Leahy DJ. Transient mammalian cell transfection with polyethylenimine (PEI). Methods Enzymol. 2013;529:227–240. DOI: 10.1016/B978-0-12-418687-3.00018-5
10. Tyurin-Kuzmin PA, Karagyaur MN, Kulebyakin KY, Dyikanov DT, Chechekhin VI, Ivanova AM, et al. Functional Heterogeneity of Protein Kinase A Activation in Multipotent Stromal Cells. Int J Mol Sci. 2020;21(12):4442. DOI: 10.3390/ijms21124442
11. Böcker W, Yin Z, Drosse I, Haasters F, Rossmann O, Wierer M, et al. Introducing a singlecell-derived human mesenchymal stem cell line expressing hTERT after lentiviral gene transfer. J Cell Mol Med. 2008;12(4):1347–1359. DOI: 10.1111/j.1582-4934.2008.00299.x
12. Jun ES, Lee TH, Cho HH, Suh SY, Jung JS. Expression of telomerase extends longevity and enhances differentiation in human adipose tissue-derived stromal cells. Cell Physiol Biochem. 2004;14(4–6):261–268. DOI: 10.1159/000080335
13. Kulebyakin K, Tyurin-Kuzmin P, Efimenko A, Voloshin N, Kartoshkin A, Karagyaur M, et al. Decreased Insulin Sensitivity in Telomerase-Immortalized Mesenchymal Stem Cells Affects Efficacy and Outcome of Adipogenic Differentiation in vitro. Front Cell Dev Biol. 2021;9:662078. DOI: 10.3389/fcell.2021.662078
14. Ozkinay C, Mitelman F. A simple trypsin-Giemsa technique producing simultaneous Gand C-banding in human chromosomes. Hereditas. 1979;90(1):1–4. DOI: 10.1111/j.1601-5223.1979.tb01287.x
15. An International System for Human Cytogenomic Nomenclature. Eds. McGowan-Jordan J, Hastings RS, Moore S. S.Karger AG, Basel (Switzerland), 2020. DOI: 10.1159/isbn.978-3-318-06867-2
16. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini FC, Krause DS, et al. Minimal Criteria for Defining Multipotent Mesenchymal Stromal Cells. The International Society for Cellular Therapy Position Statement. Cytotherapy. 2006;8:315–317. DOI: 10.1080/14653240600855905
17. Bourin P, Bunnell BA, Casteilla L, Dominici M, Katz AJ, March KL, et al. Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissuederived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT). Cytotherapy. 2013;15(6):641–648. DOI: 10.1016/j.jcyt.2013.02.006
18. Viswanathan S., Shi Y., Galipeau J., Krampera M., Leblanc K., Martin I. et al. Mesen-chymal Stem versus Stromal Cells: International Society for Cell & Gene Therapy (ISCT®) Mesenchymal Stromal Cell Committee Position Statement on Nomenclature. Cytother. 2019;21(10):1019–1024. DOI: 10.1016/j.jcyt.2019.08.002
19. Zietzer A, Hosen MR, Goody PR, Werner N, Nickenig G, Jansen F. HnRNPU regulates intra-and intercellular microRNA trafficking in a sequence specific manner, Europ Heart J. 2020;41(Suppl. 2):ehaa946.3611. DOI: 10.1093/ehjci/ehaa946.3611
20. Zietzer A, Hosen MR, Wang H, Goody PR, Sylvester M, Latz E, et al. The RNA-binding protein hnRNPU regulates the sorting of microRNA-30c-5p into large extracellular vesicles. J Extracell Vesicles. 2020;9(1):1786967. DOI: 10.1080/20013078.2020.1786967
21. Karagyaur M, Primak A, Efimenko A, Skryabina M, Tkachuk V. The Power of Gene Technologies: 1001 Ways to Create a Cell Model. Cells. 2022;11(20):3235. DOI: 10.3390/cells11203235
22. Chen J. The Cell-Cycle Arrest and Apoptotic Functions of p53 in Tumor Initiation and Progression. Cold Spring Harb Perspect Med. 2016;6(3):a026104. DOI: 10.1101/cshperspect.a026104
23. Engeland K. Cell cycle regulation: p53-p21-RB signaling. Cell Death Differ. 2022;29(5):946–960. DOI: 10.1038/s41418-022-00988-z
24. Simon M, Köster G, Menon AG, Schramm J. Functional evidence for a role of combined CDKN2A (p16-p14(ARF))/CDKN2B (p15) gene inactivation in malignant gliomas. Acta Neuropathol. 1999;98(5):444–452. DOI: 10.1007/s004010051107
25. Toouli CD, Huschtscha LI, Neumann AA, Noble JR, Colgin LM, Hukku B, Reddel RR. Comparison of human mammary epithelial cells immortalized by simian virus 40 T-Antigen or by the telomerase catalytic subunit. Oncogene. 2002;21(1):128–139. DOI: 10.1038/sj.onc.1205014
26. Jiang XR, Jimenez G, Chang E, Frolkis M, Kusler B, Sage M, et al. Telomerase expression in human somatic cells does not induce changes associated with a transformed phenotype. Nat Genet. 1999;21(1):111–114. DOI: 10.1038/5056
27. Tyurin-Kuzmin PA, Karagyaur MN, Kulebyakin KY, Dyikanov DT, Chechekhin VI, Ivanova AM, et al. Functional Heterogeneity of Protein Kinase A Activation in Multipotent Stromal Cells. Int J Mol Sci. 2020;21(12):4442. DOI: 10.3390/ijms21124442
28. Vorontsova MV, Kulebyakin KY, Makazan NV, Sozaeva LS, Tyurin-Kuzmin PA. Parathyroid hormone in the regulation of bone growth and resorption processes in norm and pathology. Bulletin of the Russian Academy of Medical Sciences. 2021;76(5):506-517.
29. Kulebyakin K, Tyurin-Kuzmin P, Efimenko A, Voloshin N, Kartoshkin A, Karagyaur M, et al. Decreased Insulin Sensitivity in Telomerase-Immortalized Mesenchymal Stem Cells Affects Efficacy and Outcome of Adipogenic Differentiation in vitro. Front Cell Dev Biol. 2021;9:662078. DOI: 10.3389/fcell.2021.662078
30. Tyurin-Kuzmin PA, Chechekhin VI, Ivanova AM, Dyikanov DT, Sysoeva VY, Kalini-na NI, Tkachuk VA. Noradrenaline Sensitivity Is Severely Impaired in Immortalized Adipose-Derived Mesenchymal Stem Cell Line. Int J Mol Sci. 2018;19(12):3712. DOI: 10.3390/ijms19123712
31. Cai Y, Laustsen A, Zhou Y, Sun C, Anderson MV, Li S, et al. Targeted, homology-driven gene insertion in stem cells by ZFN-loaded ‘all-in-one’ lentiviral vectors. Elife. 2016;5:e12213. DOI: 10.7554/eLife.12213
32. Kane NM, Nowrouzi A, Mukherjee S, Blundell MP, Greig JA, Lee WK, et al. Lentivirus-mediated Reprogramming of Somatic Cells in the Absence of Transgenic Transcription Factors. Mol Ther. 2010;18(12):2139–2145. DOI: 10.1038/mt.2010.231
33. Barsov EV. Telomerase and primary T cells: biology and immortalization for adoptive immunotherapy. Immunotherapy. 2011;3(3):407–421. DOI: 10.2217/imt.10.107
34. Dos Santos A, Lyu N, Balayan A, Knight R, Zhuo KS, Sun Y, et al. Generation of Functional Immortalized Human Corneal Stromal Stem Cells. Int J Mol Sci. 2022;23(21):13399. DOI: 10.3390/ijms232113399
35. Kalinina N, Kharlampieva D, Loguinova M, Butenko I, Pobeguts O, Efimenko A, et al. Characterization of secretomes provides evidence for adipose-derived mesenchymal stromal cells subtypes. Stem Cell Res Ther. 2015;6:221. DOI: 10.1186/s13287-015-0209-8
36. Carvalho MM, Teixeira FG, Reis RL, Sousa N, Salgado AJ. Mesenchymal stem cells in the umbilical cord: phenotypic characterization, secretome and applications in central nervous system regenerative medicine. Curr Stem Cell Res Ther. 2011;6(3):221–228. DOI: 10.2174/157488811796575332
Review
For citations:
Primak A.L., Kalinina N.I., Skryabina M.N., Usachev V.A., Chechekhin V.I., Vigovskiy M.A., Chechekhina E.S., Voloshin N.S., Kulebyakin K.Yu., Kulebyakina M.A., Grigorieva O.A., Tyurin-Kuzmin P.A., Yakovleva T.K., Turilova V.I., Shagimardanova E.I., Gazizova G.R., Basalova N.A., Efimenko A.Yu., Dzhauari S.S., Antropova Yu.G., Plyushchii I.V., Akopyan Zh.A., Sysoeva V.Yu., Tkachuk V.A., Karagyaur M.N. Creation and characterization of human mesenchymal stromal cell cultures with prolonged proliferative potential for the tasks of regenerative medicine. Регенерация органов и тканей. 2024;2(2):24-45. (In Russ.) https://doi.org/10.60043/2949-5938-2024-2-24-45