Increased expression of HOXA10 и HOXA11 in endometrial stroma cells under hypoxia depends on activity of the DNA demethylation system
https://doi.org/10.60043/2949-5938-2023-1-42-52
Abstract
Aim. The work was aimed to test whether the expression levels of endometrial-specific Hoxa10 and Hoxa11 genes in the mouse uterus change after endometrial injury caused by giving birth, and to suggest a mechanism by which these genes can be upregulated in endometrial stromal cells after injury.
Methods. The study was performed using young (8–10 weeks old) wild-type mice of the C57BL6 line; Hoxa10 and Hoxa11 gene expression in uterine tissues was assessed before delivery, as well as 4 hours and 24 hours after delivery were also used in the work. Hypoxia was modeled in vitro using human endometrial stromal cells by adding 200 mM CoCl2. Inhibition of DNA active demethylation system was performed using the Bobcat339 inhibitor. The level of expression of the Hoxa10 (HOXA10) and Hoxa11 (HOXA11) genes was assessed by real-time PCR coupled with reverse transcription, as well as by Western blotting.
Results. During the first day after birth, both Hoxa10 and Hoxa11 gene expression increases in mouse uterine tissues. In the stromal cells of the human endometrium, during hypoxia modeling, HOXA10 and HOXA11 gene expression increases, and inhibition of the active DNA demethylation system prevents noted increase in the hypoxia model.
Conclusion. We have shown for the first time that the Hoxa10 and Hoxa11 gene expression increases in vivo in the mouse uterus after endometrial damage, and also demonstrated in in vitro experiments that upregulation of these genes in endometrial stromal cells after damage can be caused by hypoxia-induced epigenetic changes associated with the operation of the active DNA demethylation system.
About the Authors
M. A. KulebyakinaRussian Federation
Maria A. Kulebyakina — junior researcher at Gene and cellular technology research laboratory
119192, Moscow, Leninskiye Gory, 1
A. S. Smirnova
Russian Federation
Anastasia S. Smirnova — Master’s student in Regenerative Biomedicine
119192, Moscow, Leninskiye Gory, 1
V. S. Popov
Russian Federation
Vladimir S. Popov — PhD, head of Translation medicine research laboratory; lead researcher
119192, Moscow, Leninskiye Gory, 1
R. Yu. Eremichev
Russian Federation
Roman Y. Eremichev — PhD, junior researcher at Gene and cell therapy laboratory
119192, Moscow, Leninskiye Gory, 1
P. I. Makarevich
Russian Federation
Pavel I. Makarevich — MD, PhD, head of Gene and cell therapy laboratory; assistant professor at Biochemistry and Regenerative Medicine department
119192, Moscow, Leninskiye Gory, 1
References
1. Kulebyakina M., Makarevich P. Hox-Positive Adult Mesenchymal Stromal Cells: Beyond Positional Identity. Front Cell Dev Biol. 2020;8:624. DOI: 10.3389/fcell.2020.00624
2. Kmita M., Duboule D. Organizing axes in time and space; 25 years of colinear tinkering. Science. 2003;301:331–333. DOI: 10.1126/science.1085753
3. Lappin T., Grier D., Thompson A., Halliday H. HOX genes: seductive science, mysterious mechanisms. Ulster Med J. 2006 Jan;75(1):23–31. Erratum in: Ulster Med J. 2006 May;75(2):135. PMID: 16457401; PMCID: PMC1891803
4. Svingen T., Tonissen K. Hox transcription factors and their elusive mammalian gene targets. Heredity. 2006;97:88–96. DOI: 10.1038/sj.hdy.6800847
5. Chang H., Chi J.-T., Dudoit S., Bondre C., van de Rijn M., Botstein D., et al. Diversity, topographic differentiation, and positional memory in human fibroblasts. Proc Natl Acad Sci USA. 2002;99: 2877–12882. DOI: 10.1073/pnas.162488599
6. Ackema K., Charité J. Mesenchymal stem cells from different organs are characterized by distinct topographic Hox codes. Stem Cells Dev. 2008;17:979–1091. DOI: 10.1089/scd.2007.0220
7. Picchi J., Trombi L., Spugnesi L., Barachini S., Maroni G., Brodano G., et al. HOX and TALE signatures specify human stromal stem cell populations from different sources. J Cell Physiol. 2013;228:879–889. DOI: 10.1002/jcp.24239
8. Uyeno L., Newman-Keagle J., Cheung I., Hunt T., Young D., Boudreau N. Hox D3 expression in normal and impaired wound healing. J Surg Res. 2001;100:46–56. DOI: 10.1006/jsre.2001.6174
9. Hansen S., Myers C., Charboneau A., Young D., Boudreau N. HoxD3 accelerates wound healing in diabetic mice. Am J Pathol. 2003;163:2421–2431. DOI: 10.1016/S0002-9440(10)63597-3
10. Rux D., Song J., Pineault K., Mandair G., Swinehart I., Schlientz A. et al. (2017). Hox11 function is required for region-specific fracture repair. J Bone Miner Res. 2017;32:1750–1760. DOI: 10.1002/jbmr.3166
11. Qu F., Palte I., Gontarz P., Zhang B., Guilak F. Transcriptomic analysis of bone and fibrous tissue morphogenesis during digit tip regeneration in the adult mouse. FASEB J. 2020; 34(7):9740-9754. DOI: 10.1096/fj.202000330R
12. Taylor H. The role of HOX genes in the development and function of the female reproductive tract. Semin Reprod Med. 2000;18:81–89. DOI: 10.1055/s-2000-13478
13. Eremichev R., Kulebyakina M., Alexandrushkina N., Nimiritsky P., Basalova N., Grigorieva O., et al. Scar-free healing of endometrium: tissue-specific program of stromal cells and its induction by soluble factors produced after damage. Front Cell Dev Biol. 2021;9:212. DOI: 10.3389/fcell.2021.616893
14. Munoz-Sanchez J., Chanez-Cardenas M. The use of cobalt chloride as a chemical hypoxia model. J App Toxicol. 2019;39(4):556–570. DOI: 10.1002/jat.3749
15. Chua G., Wassarman K., Sun H., Alp J., Jarczyk E., Kuzio N., et al. Cytosine-Based TET Enzyme Inhibitors. ACS Med Chem Lett. 2019;10(2):180–185. DOI: 10.1021/acsmedchemlett.8b00474
16. Zhang X., Yang J., Shi D., Cao Z. TET2 suppresses nasopharyngeal carcinoma progression by inhibiting glycolysis metabolism. Canc Cell Int. 2020;20(1):1–14. DOI: 10.1186/s12935-020-01456-9
17. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA. 1979;76(9):4350–4354. DOI: 10.1073/pnas.76.9.4350
18. Satokata I., Benson G., Maas R. Sexually dimorphic sterility phenotypes in Hoxa10-deficient mice. Nature. 1995;30(374(6521)):460–463. DOI: 10.1038/374460a0. PMID: 7700356
19. Decatanzaro D., Muir C., Beaton E., Jetha M. Non-invasive repeated measurement of urinary progesterone, 17β-estradiol, and testosterone in developing, cycling, pregnant, and postpartum female mice. Steroids. 2004;69(10):687–696.
20. Yoshii A., Kitahara S., Ueta H., Matsuno K., Ezaki T. Role of uterine contraction in regeneration of the murine postpartum endometrium. Biol Reprod. 2014;91:32. DOI: 10.1095/biolreprod.114.117929
21. Rytkönen K., Heinosalo T., Mahmoudian M., Ma X., Perheentupa A., Elo L., et al. Transcriptomic responses to hypoxia in endometrial and decidual stromal cells. Soc Reprod Fert. 2020;160(1):39–51. DOI: 10.1530/REP-19-0615
22. Schumacher A., Magnuson T. Murine Polycomb- and trithorax-group genes regulate homeotic pathways and beyond. Trends Genet. 1997;13(5):167–170. DOI: 10.1016/s0168-9525(97)01133-5
23. Zhu J., Wang K., Li T., Chen J., Xie D., Chang X., et al. Hypoxia-induced TET1 facilitates trophoblast cell migration and invasion through HIF1α signaling pathway. Sci Rep, 2017;7:8077. DOI: 10.1038/s41598-017-07560-7
24. Tsai Y., Chen H., Chen S.-Y., Cheng W.-C., Wang H.-W., Shen Z.-J., et al. TET1 regulates hypoxia-induced epithelial–mesenchymal transition by acting as a co-activator. Genome Biol, 2014;15:513. DOI: 10.1186/s13059-014-0513-0
Review
For citations:
Kulebyakina M.A., Smirnova A.S., Popov V.S., Eremichev R.Yu., Makarevich P.I. Increased expression of HOXA10 и HOXA11 in endometrial stroma cells under hypoxia depends on activity of the DNA demethylation system. Регенерация органов и тканей. 2023;1(1):42-52. (In Russ.) https://doi.org/10.60043/2949-5938-2023-1-42-52