Golden gate method in biology and medicine
https://doi.org/10.60043/2949-5938-2024-1-16-28
Abstract
The aim of this review was to describe and compare molecular cloning methods for assembling genetic constructs. Genetic therapy is one of the rapidly developing fields of modern medicine, so special attention in this review is paid to parameters such as speed, accuracy, and efficiency of cloning, as these are critical factors in creating gene therapy agents. Special attention is given to the Golden Gate method, which is based on the use of type IIS restriction endonucleases, as this approach simplifies the cloning process and increases its efficiency through standardized design and a minimal set of enzymes. Alongside Golden Gate, the review also discusses more innovative molecular cloning methods, Gateway and Gibson, in terms of their potential use for addressing fundamental and applied challenges in regenerative medicine.
About the Authors
M. I. AntipinaRussian Federation
Maria I. Antipina — Research Engineer at the Translational Research Laboratory of the Institute of Medicine and Life Sciences (MEDBIO)
Alexander Nevsky Str., 14, 236041, Kaliningrad
V. A. Li
Russian Federation
Vladislav A. Li — 4th-year student specializing in Bioengineering and Bioinformatics at the Institute of Medicine and Life Sciences (MEDBIO)
Alexander Nevsky Str., 14, 236041, Kaliningrad
E. E. Popova
Russian Federation
Elizaveta E. Popova — 4th-year student specializing in Bioengineering and Bioinformatics at the Institute of Medicine and Life Sciences (MEDBIO)
Alexander Nevsky Str., 14, 236041, Kaliningrad
E. V. Semina
Russian Federation
Ekaterina V. Semina — Dr. Sci. (Biology), Head of the Translational Research Laboratory at the Institute of Medicine and Life Sciences (MEDBIO)
Alexander Nevsky Str., 14, 236041, Kaliningrad
References
1. Weber E, Engler C, Gruetzner R, Werner S, Marillonnet S. A Modular Cloning System for Standardized Assembly of Multigene Constructs. PLOS One. 2011;6(2):e16765. DOI: 10.1371/journal.pone.0016765
2. A Quick Overview Of Molecular Cloning. https://www.goldbio.com/articles/article/cloning-overview [Accessed March 31, 2024].
3. Williams SA, Slatko BE, McCarrey JR. Laboratory investigations in molecular biology. Jones and Bartlett Publishers, 2007.
4. Struhl K. Subcloning of DNA fragments. Current Protocols in Molecular Biology. 1991; 13(1):3.16. DOI: 10.1002/0471142727.mb0316s13
5. Shetty RP, Endy D, Knight TFJr. Engineering BioBrick vectors from BioBrick parts. Journal of Biological Engineering. 2008;2(1):5. DOI: 10.1186/1754-1611-2-5
6. Sleight SC, Bartley BA, Lieviant, JA, and Sauro HM. In-Fusion BioBrick assembly and reengineering. Nucleic Acids Research. 2010;38(8):2624–2636. DOI: 10.1093/nar/gkq179
7. Hoseini S, Sauer MG. Molecular cloning using polymerase chain reaction, an educational guide for cellular engineering. Journal of Biological Engineering. 2015;9(1):2. DOI: 10.1186/1754-1611-9-2
8. Motohashi K. A novel series of high-efficiency vectors for TA cloning and blunt-end cloning of PCR products. Scientific Reports. 2019;9(1):6417. DOI: 10.1038/s41598-019-42868-6
9. Zhou MY, Gomez-Sanchez CE. Universal TA Cloning. Current Issues in Molecular Biology. 2000;2:1–7. DOI: 10.21775/cimb.002.001
10. Plasmid 101: TOPO Cloning https://blog.addgene.org/plasmids-101-topo-cloning [Accessed April 10, 2024].
11. Shuman S. Recombination mediated by vaccinia virus DNA topoisomerase I in Escherichia coli is sequence specific. Proceedings of the National Academy of Sciences. 1991;88(22):10104–10108. DOI: 10.1073/pnas.88.22.10104
12. Shuman S. Novel approach to molecular cloning and polynucleotide synthesis using vaccinia DNA topoisomerase. Journal of Biological Chemistry. 1994;269(51):32678–32684. DOI: 10.1016/s0021-9258(18)31688-0
13. Reece-Hoyes JS, Walhout AJM. Gateway recombinational cloning. Cold Spring Harbor Protocols. 2018;2018(1):pdb.top094912. DOI: 10.1101/pdb.top094912
14. Chin CF, Chee JY. Gateway cloning technology: Advantages and drawbacks. Cloning & Transgenesis. 2015;04(01):1-3. DOI: 10.4172/2168-9849.1000138
15. Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CAIII, Smith HO. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nature Methods. 2009;6(5):343– 345. DOI: 10.1038/nmeth.1318
16. Gibson DG, Glass JI, Lartigue C, Noskov VN, Chuang RY, Algire MA, et al. Creation of a bacterial cell controlled by a chemically synthesized genome. Science. 2010;329(5987):52–56. DOI: 10.1126/science.1190719
17. Engler C, Kandzia R, Marillonnet S. A one pot, one step, precision cloning method with high throughput capability. PLOS One. 2008;3(11):e3647. DOI: 10.1371/journal.pone.0003647
18. Engler C, Marillonnet S. Combinatorial DNA assembly using Golden Gate cloning. In Synthetic Biology. Humana Press. 2013;1073:141-156. DOI: 10.1007/978-1-62703-625-2_12
19. Chiasson D, Giménez-Oya V, Bircheneder M, Bachmaier S, Studtrucker T, Ryan J, et al. A unified multi-kingdom Golden Gate cloning platform. Scientific Reports. 2019;9(1):10131. DOI: 10.1038/s41598-019-46171-2
20. Potapov V, Ong JL, Kucera RB, Langhors BW, Bilotti K, Pryor JM, et al. Comprehensive profiling of four base overhang ligation fidelity by T4 DNA ligase and application to DNA assembly. ACS Synthetic Biology. 2018;7(11):2665–2674. DOI: 10.1021/acssynbio.8b00333
21. Plasmid 101: Golden Gate Cloning https://blog.addgene.org/plasmids-101-golden-gate-cloning [Accessed April 17, 2024].
22. New England BioLabs: Golden Gate Assembly https://international.neb.com/applications/cloning-and-synthetic-biology/dna-assembly-and-cloning/golden-gate-assembly [Accessed April 17, 2024].
23. Kues WA, Kumar D, Selokar NL, Talluri TR. Applications of genome editing tools in stem cells towards regenerative medicine: An update. Current Stem Cell Research & Therapy 2022;17(3):267–279. DOI: 10.2174/1574888X16666211124095527
24. Barker JC, Barker AD, Bills J, Huang J, Wight-Carter M, Delgado I, et al. Genome Editing of Mouse Fibroblasts by Homologous Recombination for Sustained Secretion of PDGF-B and Augmentation of Wound Healing. Plastic and Reconstructive Surgery. 2014;134(3):389e–401e. doi: 10.1097/PRS.0000000000000427
25. Niu W, Zang T, Zou Y, Fang S, Smith DK, Bachoo R, et al. In vivo reprogramming of astrocytes to neuroblasts in the adult brain. Nature Cell Biology. 2013;15(10):1164–1175. doi: 10.1038/ncb2843
26. György B, Lööv C, Zaborowski MP, Takeda S, Kleinstiver BP, Commins C, et al. CRISPR/Cas9 Mediated Disruption of the Swedish APP Allele as a Therapeutic Approach for Early-Onset Alzheimer’s Disease. Molecular Therapy — Nucleic Acids. 2018;11:429–440. doi: 10.1016/j.omtn.2018.03.007
27. Guo Z, Zhang L, Wu Z, Chen Y, Wang F, Chen G. In Vivo Direct Reprogramming of Reactive Glial Cells into Functional Neurons after Brain Injury and in an Alzheimer’s Disease Model. Cell Stem Cell. 2014;14(2):188–202. doi: 10.1016/j.stem.2013.12.001
28. Schwank G, Koo BK, Sasselli V, Dekkers JF, Heo I, Demircan T, et al. Functional Repair of CFTR by CRISPR/Cas9 in Intestinal Stem Cell Organoids of Cystic Fibrosis Patients. Cell Stem Cell. 2013;13(6):653–658. doi: 10.1016/j.stem.2013.11.002
29. Firth AL, Menon T, Parker GS, Qualls SJ, Lewis BM, Ke E, et al. Functional Gene Correction for Cystic Fibrosis in Lung Epithelial Cells Generated from Patient iPSCs. Cell Reports. 2015;12(9):1385–1390. doi: 10.1016/j.celrep.2015.07.062
30. Cho HM, Lee KH, Shen Y ming, Shin TJ, Ryu PD, Choi MC, et al. Transplantation of hMSCs Genome Edited with LEF1 Improves Cardio-Protective Effects in Myocardial Infarction. Molecular Therapy — Nucleic Acids. 2020;19:1186–1197. doi: 10.1016/j.omtn.2020.01.007
31. О государственном регулировании в области генно-инженерной деятельности: федеральный закон от 12.07.1996 № 86-ФЗ; в ред. от 29.12.2022. Собрание законодательства РФ. 1996. № 28. Cт. 3348
32. Park S, Gwon Y, Khan SA, Jang KJ, Kim J. Engineering considerations of iPSC-based personalized medicine. Biomaterials Research. 2023;27(1):67. doi: 10.1186/s40824-023-00382-x
33. Kim C. Disease modeling and cell based therapy with iPSC: future therapeutic option with fast and safe application. Blood Research. 2014;49(1):7–14. doi: 10.5045/br.2014.49.1.7
34. Gao X, Yang J, Tsang JCH, Ooi J, Wu D, Liu P. Reprogramming to Pluripotency Using Designer TALE Transcription Factors Targeting Enhancers. Stem Cell Reports. 2013;1(2):183– 197. doi: 10.1016/j.stemcr.2013.06.002
35. Weltner J, Balboa D, Katayama S, Bespalov M, Krjutškov K, Jouhilahti EM, et al. Human pluripotent reprogramming with CRISPR activators. Nature Communications. 2018;9(1):2643. doi: 10.1038/s41467-018-05067-x
36. Weltner J, Trokovic R. Reprogramming of Fibroblasts to Human iPSCs by CRISPR Activators. Methods Mol Biol. 2021;2239:175–198. doi: 10.1007/978-1-0716-1084-8_12.
Review
For citations:
Antipina M.I., Li V.A., Popova E.E., Semina E.V. Golden gate method in biology and medicine. Регенерация органов и тканей. 2024;2(1):16-28. (In Russ.) https://doi.org/10.60043/2949-5938-2024-1-16-28