Preview

Регенерация органов и тканей

Advanced search

Isolation and cultivation of human endometrial epithelial cells

https://doi.org/10.60043/2949-5938-2024-4-49-67

Abstract

The aim of this work was to develop and optimize methods for obtaining and culturing human endometrial epithelial cells from a non-invasive source — menstrual blood. The study aims to create personalized in vitro endometrial models to study embryo implantation mechanisms, search for markers of endometrial receptivity, and develop new approaches to treat gynecological diseases, including infertility.
Methods. Menstrual blood collected from healthy donors was used to obtain endometrial cells. Endometrial fragments were isolated by filtration and enzymatic treatment. Cell culture was carried out under various conditions: as a monolayer (2D), tissue culture and organoids (3D). Immunocytochemical staining for the markers cytokeratin and E-cadherin was used to confirm the epithelial phenotype. To investigate endocytosis of the epidermal growth factor receptor ( EGFR) in tissue culture, fluorescence-labeled EGF was used.
Results. Menstrual blood has been shown to be an affordable source for producing viable endometrial cells. The resulting endometrial tissue culture preserves tissue architecture and can serve as a model for the study of endocytosis of the epidermal growth factor receptor ( EGFR). Cultivation of endometrial epithelium cells in the form of organoids made it possible to preserve the epithelial phenotype and proliferative activity of cells for a long time. Organoids demonstrated the ability to self-organize and form single-layer cell structures, which confirms their suitability for modeling the processes occurring in the endometrium in vivo. At the same time, cultivation under 2D conditions led to rapid aging of cells and loss of their functional properties.
Conclusion. The developed methods for culturing endometrial epithelial cells in the form of tissue culture and organoids open up new possibilities for studying the mechanisms of embryo implantation and searching for markers of endometrial receptivity. The findings have important implications for the development of personalized medicine, in particular for improving the effectiveness of assisted reproductive technology (ART) programs and developing new therapeutic approaches for the treatment of gynecological diseases.

About the Authors

I. V. Kozhukharova
Institute of Cytology of the Russian Academy of Sciences
Russian Federation

Irina V. Kozhukharova - Dr. Sci. (Biology), senior scientist of Laboratory of Intracellular Signaling, Department of Intracellular Signaling and Transport

St. Petersburg, Tikhoretsky ave., 4


Competing Interests:

The authors declare no conflict of interest.



I. K. Kuneev
Institute of Cytology of the Russian Academy of Sciences
Russian Federation

Ivan K. Kuneev - PhD student, junior scientist of Laboratory of Intracellular Signaling, Department of Intracellular Signaling and Transport

St. Petersburg, Tikhoretsky ave., 4


Competing Interests:

The authors declare no conflict of interest.



M. A. Shorokhova
Institute of Cytology of the Russian Academy of Sciences
Russian Federation

Maria A. Shorokhova - Dr. Sci. (Biology), scientist of Laboratory of Intracellular Signaling, Department of Intracellular Signaling and Transport

St. Petersburg, Tikhoretsky ave., 4


Competing Interests:

The authors declare no conflict of interest.



M. V. Kharchenko
Institute of Cytology of the Russian Academy of Sciences
Russian Federation

Marianna V. Kharchenko - Dr. Sci. (Biology), senior scientist of Laboratory of Intracellular Membranes Dynamics, Department of Intracellular Signaling and Transport

St. Petersburg, Tikhoretsky ave., 4


Competing Interests:

The authors declare no conflict of interest.



E. S. Kornilova
Institute of Cytology of the Russian Academy of Sciences
Russian Federation

Elena S. Kornilova - Dr. Sci. (Biology), head of Laboratory of Intracellular Membranes Dynamics, Department of Intracellular Signaling and Transport

St. Petersburg, Tikhoretsky ave., 4


Competing Interests:

The authors declare no conflict of interest.



A. P. Domnina
Institute of Cytology of the Russian Academy of Sciences
Russian Federation

Alisa P. Domnina - Dr. Sci. ( Biology), senior scientist of L aboratory of Intracellular Signaling, Department of Intracellular Signaling and Transport

St. Petersburg, Tikhoretsky ave., 4


Competing Interests:

The authors declare no conflict of interest.



References

1. Goetz LH, Schork NJ. Personalized medicine: motivation, challenges, and progress. Fertil Steril. 2018 Jun;109(6):952–963. DOI: 10.1016/j.fertnstert.2018.05.006

2. Villalón-García I, Álvarez-Córdoba M, Suárez-Rivero JM, Povea-Cabello S, Talaverón-Rey M, Suárez-Carrillo A, et al. Precision Medicine in Rare Diseases. Diseases. 2020;8(4):42. DOI: 10.3390/diseases8040042

3. Wang H, Bocca S, Anderson S, Yu L, Rhavi BS, Horcajadas J, Oehninger S. Sex steroids regulate epithelial-stromal cell cross talk and trophoblast attachment invasion in a three-dimensional human endometrial culture system. Tissue Eng Part C Methods. 2013;19(9):676. DOI: 10.1089/ten.TEC.2012.0616

4. Montin D, Santilli V, Beni A, Costagliola G, Martire B, Mastrototaro MF, et al. Towards personalized vaccines. Front Immunol. 2024;3:1436108. DOI: 10.3389/fimmu.2024.1436108

5. Owen MC, Kopecky BJ. Targeting macrophages in organ transplantation: a step toward personalized medicine. Transplantation. 2024;108(12):2045. DOI: 10.1097/TP.0000000000004978

6. Zhang PY, Yu Y. Precise personalized medicine in gynecology cancer and infertility. Front Cell Dev Biol. 2020;7:382. DOI: 10.3389/fcell.2019.00382

7. Beim PY, Elashoff M, Hu-Seliger TT. Personalized reproductive medicine on the brink: progress, opportunities and challenges ahead. Reprod Biomed Online. 2013;27(6):611–623. DOI: 10.1016/j.rbmo.2013.09.010

8. Collins SC. Precision reproductive medicine: multigene panel testing for infertility risk assessment. J Assist Reprod Genet. 2017;34(8):967–973. DOI: 10.1007/s10815-017-0938-y

9. Krawetz SA. Personalized precision reproductive medicine and diagnostics. Syst Biol Reprod Med. 2017;63(1):1. DOI: 10.1080/19396368.2017.1278984

10. Francés-Herrero E, Lopez R, Hellström M, de Miguel-Gómez L, Herraiz S, Brännström M, et al. Bioengineering trends in female reproduction: a systematic review. Hum Reprod Update. 2022;28(6):798–837. DOI: 10.1093/humupd/dmac025

11. Rodríguez-Eguren A, Bueno-Fernandez C, Gómez-Álvarez M, Francés-Herrero E, Pellicer A, Bellver J, et al. Evolution of biotechnological advances and regenerative therapies for endometrial disorders: a systematic review. Hum Reprod Update. 2024;30(5):584–613. DOI: 10.1093/humupd/dmae013

12. Zubizarreta ME, Xiao S. Bioengineering models of female reproduction. Biodes Manuf. 2020;3(3):237–251. DOI: 10.1007/s42242-020-00082-8

13. Sittadjody S, Criswell T, Jackson JD, Atala A, Yoo JJ. Regenerative medicine approaches in bioengineering female reproductive tissues. Reprod Sci. 2021;28(6):1573–1595. DOI: 10.1007/s43032-021-00548-9

14. Christian M, Mak I, White JO, Brosens JJ. Mechanisms of decidualization. Reprod Biomed Online. 2002;4(suppl 3):24–30. DOI: 10.1016/s1472-6483(12)60112-6

15. Gellersen B, Brosens IA, Brosens JJ. Decidualization of the human endometrium: mechanisms, functions, and clinical perspectives. Semin Reprod Med. 2007;25(6):445–453. DOI: 10.1055/s-2007-991042

16. Muter J, Lynch VJ, McCoy RC, Brosens JJ. Human embryo implantation. Development. 2023;150(10):dev201507. DOI: 10.1242/dev.201507

17. Gellersen B, Brosens JJ. Cyclic decidualization of the human endometrium in reproductive health and failure. Endocr Rev. 2014;35(6):851–905. DOI: 10.1210/er.2014-1045

18. Lessey BA, Young SL. What exactly is endometrial receptivity? Fertil Steril. 2019;111(4):611–617. DOI: 10.1016/j.fertnstert.2019.02.009

19. Aganezova NV, Aganezov SS, Gogichashvili KE. Characteristics of endometrial receptivity in women with different endometrial thickness. Obstet Gynecol Reprod. 2022;16(2):108–121. DOI: 10.17749/2313-7347/ob.gyn.rep.2022.303

20. Nikas G. Pinopodes as markers of endometrial receptivity in clinical practice. Hum Reprod. 1999;14(suppl 2):99–106. DOI: 10.1093/humrep/14.suppl_2.99

21. Nikas G, Makrigiannakis A. Endometrial pinopodes and uterine receptivity. Ann N Y Acad Sci. 2003;997:120–123. DOI: 10.1196/annals.1290.042

22. Aunapuu M, Kibur P, Järveots T, Arend A. Changes in morphology and presence of pinopodes in endometrial cells during the luteal phase in women with infertility problems: a pilot study. Medicina (Kaunas). 2018;54(5):69. DOI: 10.3390/medicina54050069

23. Salleh N, Giribabu N. Leukemia inhibitory factor: roles in embryo implantation and in nonhormonal contraception. ScientificWorldJournal. 2014;2014:201514. DOI: 10.1155/2014/201514

24. Aikawa S, Hiraoka T, Matsuo M, Fukui Y, Fujita H, Saito-Fujita T, et al. Spatiotemporal functions of leukemia inhibitory factor in embryo attachment and implantation chamber formation. Cell Death Discov. 2024;10:481. DOI: 10.1038/s41420-024-02228-4

25. Staun-Ram E, Shalev E. Human trophoblast function during the implantation process. Reprod Biol Endocrinol. 2005;3:56. DOI: 10.1186/1477-7827-3-56

26. Gauster M, Moser G, Wernitznig S, Kupper N, Huppertz B. Early human trophoblast development: from morphology to function. Cell Mol Life Sci. 2022;79(6):345. DOI: 10.1007/s00018-022-04377-0

27. Le Saint C, Crespo K, Bourdiec A, Bissonnette F, Buzaglo K, Couturier B, et al. Autologous endometrial cell co-culture improves human embryo development to high-quality blastocysts: a randomized controlled trial. Reprod Biomed Online. 2019;38(3):321–329. DOI: 10.1016/j.rbmo.2018.12.039

28. Айламазян ЭК, Дурнова АО, Полякова ВО, Судалина МН, Кветной ИМ. Ко-культивирование эмбриона человека с эндометрием: оптимизация экстракорпорального оплодотворения. Журнал акушерства и женских болезней. 2012;61(4):16–22.

29. Koot YE, Teklenburg G, Salker MS, Brosens JJ, Macklon NS. Molecular aspects of implantation failure. Biochim Biophys Acta. 2012;1822(12):1943–1950. DOI: 10.1016/j.bbadis.2012.05.017

30. Кибанов МВ, Махмудова ГМ, Гохберг ЯА. Поиск идеального маркера для оценки рецептивности эндометрия: от гистологии до современных молекулярно-генетических подходов. Альманах клинической медицины. 2019;47(1):12–25. DOI: 10.18786/2072-0505-2019-47-005

31. Гохберг ЯА, Макарова НП, Бабаян АА, Калинина ЕА. Роль различных факторов воздействия на эндометрий в повышении эффективности программ вспомогательных репродуктивных технологий. Акушерство и гинекология. 2021;1:28–34. DOI: 10.18565/aig.2021.1.28-34

32. Гохберг ЯА, Тимофеева АВ, Калинина ЕА. Молекулярные маркеры рецептивности эндометрия в программах вспомогательных репродуктивных технологий. Акушерство и гинекология. 2021;11:56–62. DOI: 10.18565/aig.2021.11.56-62

33. Корсак ВС, Смирнова АА, Шурыгина ОВ. Регистр ВРТ Российской ассоциации репродукции человека. Отчет за 2017 год. Проблемы репродукции. 2019;25(6):9–21. DOI: 10.17116/repro2019250619

34. Боярский К.Ю., Гайдуков С.Н., Пальченко Н.А. Современный взгляд на проблему рецептивности и тонкого эндометрия в программах ВРТ. Проблемы репродукции. 2013;4:51–60.

35. Critchley HOD, Babayev E, Bulun SE, Clark S, Garcia-Grau I, Gregersen PK, et al. Menstruation: science and society. Am J Obstet Gynecol. 2020;223(6):624–664. DOI: 10.1016/j.ajog.2020.06.004

36. Critchley HOD, Maybin JA, Armstrong GM, Williams ARW. Physiology of the endometrium and regulation of menstruation. Physiol Rev. 2020;100(3):1149–1179. DOI: 10.1152/physrev.00031.2019

37. Muter J, Kong CS, Brosens JJ. The role of decidual subpopulations in implantation, menstruation and miscarriage. Front Reprod Health. 2021;3:804921. DOI: 10.3389/frph.2021.804921

38. Земелько ВИ, Гринчук ТМ, Домнина АП, Арцыбашева ИВ, Зенин ВВ, Кирсанов АА и др. Мультипотентные мезенхимные стволовые клетки десквамированного эндометрия. Выделение, характеристика и использование в качестве фидерного слоя для культивирования эмбриональных стволовых линий человека. Цитология. 2011;53:919. DOI: 10.1134/S1990519X12010129

39. Kamentseva RS, Kharchenko MV, Gabdrahmanova GV, Kotov MA, Kosheverova VV, Kornilova ES. EGF, TGF-α and amphiregulin differently regulate endometrium-derived mesenchymal stromal/stem cells. Int J Mol Sci. 2023;24(17):13408. DOI: 10.3390/ijms241713408

40. Tindala K, Filby CE, Cousins FL, Ellery SJ, Vollenhoven B, Palmer K, et al. The composition of menstrual fluid, its applications, and recent advances to understand the endometrial environment: a narrative review. F&S Reviews, 2024;5(3):100075. DOI: 10.1016/j.xfnr.2024.100075

41. Gargett CE, Schwab KE, Deane JA. Endometrial stem/progenitor cells: the first 10 years. Hum Reprod Update. 2016;22(2):137–163. DOI: 10.1093/humupd/dmv051

42. Ilavarasi CR, Jyothi GS, Alva NK. Study of the efficacy of Pipelle biopsy technique to diagnose endometrial diseases in abnormal uterine bleeding. J Midlife Health. 2019;10(2):75–80. DOI: 10.4103/jmh.JMH_109_18

43. Cindrova-Davies T, Zhao X, Elder K, Jones CJP, Moffett A, Burton GJ, Turco MY. Menstrual flow as a non-invasive source of endometrial organoids. Commun Biol. 2021;4:1. DOI: 10.1038/s42003-021-02194-y

44. Bozorgmehr M, Gurung S, Darzi S, Nikoo S, Kazemnejad S, Zarnani AH, Gargett CE. Endometrial and menstrual blood mesenchymal stem/stromal cells: biological properties and clinical application. Front Cell Dev Biol. 2020;8:497. DOI: 10.3389/fcell.2020.00497

45. Sanchez-Mata A, Gonzalez-Muñoz E. Understanding menstrual blood-derived stromal/stem cells: definition and properties. Are we rushing into their therapeutic applications? iScience. 2021;24(12):103501. DOI: 10.1016/j.isci.2021.103501

46. Quenby S, Brosens JJ. Human implantation: a tale of mutual maternal and fetal attraction. Biol Reprod. 2013;88(3):81. DOI: 10.1095/biolreprod.113.108886

47. Brosens JJ, Parker MG, McIndoe A, Pijnenborg R, Brosens IA. A role for menstruation in preconditioning the uterus for successful pregnancy. Am J Obstet Gynecol. 2009;200(6):615. e1–6. DOI: 10.1016/j.ajog.2008.11.037

48. Macklon NS, Brosens JJ. The human endometrium as a sensor of embryo quality. Biol Reprod. 2014;91(4):98. DOI: 10.1095/biolreprod.114.122846

49. Brosens JJ, Salker MS, Teklenburg G, Nautiyal J, Salter S, Lucas ES, et al. Uterine selection of human embryos at implantation. Sci Rep. 2014;4:3894. DOI: 10.1038/srep03894

50. Иванова НА, Гуменюк ЕГ. Брюшная беременность: что нового? Обзор литературы за 10 лет (2009–2019 гг.). Проблемы репродукции. 2021;27(4):142–149. DOI: 10.17116/repro202127041142

51. Буянова СН, Щукина НА, Чечнева МА. Брюшная беременность. Российский вестник акушера-гинеколога. 2014;14(5):71–74.

52. Корсак ВС. К вопросу о роли эндометрия в имплантации эмбрионов. Проблемы репродукции. 2016;22(2):33–36. DOI: 10.17116/repro201622233-36

53. Никитин АИ. Комментарий к статье В.С. Корсака «К вопросу о роли эндометрия в имплантации эмбрионов». Проблемы репродукции. 2016;22(3):127–128. DOI: 10.17116/repro2016223127-128

54. Домнина АП, Новикова ПВ, Фридлянская ИИ, Шилина МА, Зенин ВВ, Никольский НН. Индукция децидуальной дифференцировки в эндометриальных мезенхимных стволовых клетках. Цитология. 2014;57(12):880–884.

55. Chen JC, Roan NR. Isolation and culture of human endometrial epithelial cells and stromal fibroblasts. Bio Protoc. 2015;5:e1623. DOI: 10.21769/bioprotoc.1623

56. Gargett CE, Schwab KE, Zillwood RM, Nguyen HP, Wu D. Isolation and culture of epithelial progenitors and mesenchymal stem cells from human endometrium. Biol Reprod. 2009;80(6):1136–1145. DOI: 10.1095/biolreprod.108.075226

57. Hewitt SC, Dickson MJ, Edwards N, Hampton K, Garantziotis S, DeMayo FJ. From cup to dish: how to make and use endometrial organoid and stromal cultures derived from menstrual fluid. Frontiers in Endocrinology. 2023;14(14):1220622. DOI: 10.3389/fendo.2023.1220622

58. Boretto M, Cox B, Noben M, Hendriks N, Fassbender A, Roose H, et al. Development of organoids from mouse and human endometrium showing endometrial epithelium physiology and long-term expandability. Development. 2017;144(10):1775–1786. DOI: 10.1242/dev.148478

59. Murphy AR, Wiwatpanit T, Lu Z, Davaadelger B, Kim JJ. Generation of multicellular human primary endometrial organoids. J Vis Exp. 2019;(152):e60384. DOI: 10.3791/60384

60. Turco MY, Gardner L, Hughes J, Cindrova-Davies T, Gomez MJ, Farrell L, et al. Long-term, hormone-responsive organoid cultures of human endometrium in a chemically defined medium. Nat Cell Biol. 2017;19(5):568–577. DOI: 10.1038/ncb3516

61. Fitzgerald HC, Dhakal P, Behura SK, Schust DJ, Spencer TE. Self-renewing endometrial epithelial organoids of the human uterus. Proc Natl Acad Sci USA. 2019;116(46):23132–23142. DOI: 10.1073/pnas.1915389116

62. Kibbey MC. Maintenance of the EHS sarcoma and Matrigel preparation. J Tissue Cult Methods. 1994;16(3–4):227–230. DOI: 10.1007/BF01540656

63. Gjorevski N, Sachs N, Manfrin A, Giger S, Bragina ME, Ordóñez-Morán P, et al. Designer matrices for intestinal stem cell and organoid culture. Nature. 2016;539(7630):560–564. DOI: 10.1038/nature20168

64. Hernandez-Gordillo V, Robinton D, Griffith LG. Fully synthetic matrices for in vitro culture of primary human intestinal enteroids and endometrial organoids. Biomaterials. 2020;254:120125. DOI: 10.1016/j.biomaterials.2020.120125

65. Sugimoto S, Sato T. Establishment of 3D intestinal organoid cultures from intestinal stem cells. Methods Mol Biol. 2017;1612:97–105. DOI: 10.1007/978-1-4939-7021-6_7

66. Hibaoui Y, Feki A. Organoid models of human endometrial development and disease. Front Cell Dev Biol. 2020;8:84. DOI: 10.3389/fcell.2020.00084


Review

For citations:


Kozhukharova I.V., Kuneev I.K., Shorokhova M.A., Kharchenko M.V., Kornilova E.S., Domnina A.P. Isolation and cultivation of human endometrial epithelial cells. Регенерация органов и тканей. 2024;2(4):49-67. (In Russ.) https://doi.org/10.60043/2949-5938-2024-4-49-67

Views: 18


ISSN 2949-5938 (Online)