Preview

Регенерация органов и тканей

Расширенный поиск

Технологии редактирования генома и перспективы их применения в биомедицине

https://doi.org/10.60043/2949-5938-2024-1-54-77

Аннотация

Технологии редактирования генома и  их модификации являются незаменимым инструментом для изучения функций отдельных молекул, получения клеточных линий и  животных с  заданными свойствами, а  также разработки перспективных подходов к терапии не излечимых ранее заболеваний. Данный обзор освещает различные аспекты технологий геномного редактирования: от их биологического значения до принципов функционирования и наиболее перспективных областей применения в фундаментальных и прикладных исследованиях. Особое внимание уделено обсуждению ограничений технологий редактирования генома, а также правовых и этических аспектов их применения для коррекции генома человека. Данный обзор может быть интересен широкому кругу читателей, желающих узнать больше о  технологиях редактирования генома и планирующих их практическое применение.

Об авторах

М. Н. Карагяур
ФГБОУ ВО «Московский государственный университет имени М.В. Ломоносова»; Институт регенеративной медицины, Медицинский научно-образовательный центр, ФГБОУ ВО «Московский государственный университет имени М.В. Ломоносова»
Россия

Карагяур Максим Николаевич  — к.б.н., старший научный сотрудник, Институт регенеративной медицины; доцент, Факультет фундаментальной медицины

119192, Ломоносовский проспект, 27, к. 1, Москва

119192, Ломоносовский проспект, 27, к. 10, Москва



А. Л. Примак
ФГБОУ ВО «Московский государственный университет имени М.В. Ломоносова»
Россия

Примак Александра Леонидовна  — аспирант, лаборант-исследователь НИЛ генных и клеточных технологий, Факультет фундаментальной медицины

119192, Ломоносовский проспект, 27, к. 1, Москва



С. С. Джауари
ФГБОУ ВО «Московский государственный университет имени М.В. Ломоносова»
Россия

Джауари Сталик Станиславович  — аспирант, лаборант-исследователь НИЛ генных и клеточных технологий, Факультет фундаментальной медицины

119192, Ломоносовский проспект, 27, к. 1, Москва



К. Д. Бозов
ФГБОУ ВО «Московский государственный университет имени М.В. Ломоносова»
Россия

Бозов Кирилл Дмитриевич — аспирант, лаборант-исследователь НИЛ генных и клеточных технологий, Факультет фундаментальной медицины

119192, Ломоносовский проспект, 27, к. 1, Москва



Ю. В. Макусь
ФГБОУ ВО «Московский государственный университет имени М.В. Ломоносова»
Россия

Макусь Юлия Валерьевна — студент-практикант кафедры биохимии и регенеративной биомедицины факультета фундаментальной медицины

119192, Ломоносовский проспект, 27, к. 1, Москва



Список литературы

1. Landhuis E. The definition of gene therapy has changed. Scientific American. 2021. https://www.scientificamerican.com/article/the-definition-of-gene-therapy-has-changed/

2. Tao J, Bauer DE, Chiarle R. Assessing and advancing the safety of CRISPR-Cas tools: from DNA to RNA editing. Nat Commun. 2023;14(1):212. DOI: 10.1038/s41467-023-35886-6

3. Wirth T, Parker N, Ylä-Herttuala S. History of gene therapy. Gene. 2013;525(2):162–169. DOI: 10.1016/j.gene.2013.03.137

4. Gossler A, Doetschman T, Korn R, Serfling E, Kemler R. Transgenesis by means of blastocyst-derived embryonic stem cell lines. Proc Natl Acad Sci USA. 1986;83(23):9065–9069. DOI: 10.1073/pnas.83.23.9065

5. Robertson E, Bradley A, Kuehn M, Evans M. Germ-line transmission of genes introduced into cultured pluripotential cells by retroviral vector. Nature. 1986;323(6087):445–448. DOI: 10.1038/323445a0

6. Capecchi MR. Altering the genome by homologous recombination. Science. 1989;244(4910): 1288–1292. DOI: 10.1126/science.2660260

7. Haber JE. Exploring the pathways of homologous recombination. Curr Opin Cell Biol. 1992;4(3):401–412. DOI: 10.1016/0955-0674(92)90005-w

8. Rosenberg SM, Hastings PJ. The split-end model for homologous recombination at double-strand breaks and at Chi. Biochimie. 1991;73(4):385–397. DOI: 10.1016/0300-9084(91)90105-a

9. Wright WD, Shah SS, Heyer WD. Homologous recombination and the repair of DNA doublestrand breaks. J Biol Chem. 2018;293(27):10524–10535. DOI: 10.1074/jbc.TM118.000372

10. Cohen-Tannoudji M, Robine S, Choulika A, Pinto D, El Marjou F, Babinet C, et al. I-SceI-induced gene replacement at a natural locus in embryonic stem cells. Mol Cell Biol. 1998;18(3):1444–1448. DOI: 10.1128/MCB.18.3.1444

11. Epinat JC, Arnould S, Chames P, Rochaix P, Desfontaines D, Puzin C, et al. A novel engineered meganuclease induces homologous recombination in yeast and mammalian cells. Nucleic Acids Res. 2003;31(11):2952–2962. DOI: 10.1093/nar/gkg375

12. Gaj T, Gersbach CA, Barbas CF 3rd. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 2013;31(7):397–405. DOI: 10.1016/j.tibtech.2013.04.004

13. Carroll D. Genome engineering with zinc-finger nucleases. Genetics. 2011;188(4):773–782. DOI: 10.1534/genetics.111.131433

14. Gupta PK, Balyan HS, Gautam T. SWEET genes and TAL effectors for disease resistance in plants: Present status and future prospects. Mol Plant Pathol. 2021;22(8):1014–1026. DOI: 10.1111/mpp.13075

15. Kaczorowski T, Skowron P, Podhajska AJ. Purification and characterization of the FokI restriction endonuclease. Gene. 1989;80(2):209–216. DOI: 10.1016/0378-1119(89)90285-0

16. Chandrasegaran S, Carroll D. Origins of Programmable Nucleases for Genome Engineering. J Mol Biol. 2016;428(5 Pt B):963–989. DOI: 10.1016/j.jmb.2015.10.014

17. Bhaya D, Davison M, Barrangou R. CRISPR-Cas systems in bacteria and archaea: versatile small RNAs for adaptive defense and regulation. Annu Rev Genet. 2011;45:273–297. DOI: 10.1146/annurev-genet-110410-132430

18. Liu G, Lin Q, Jin S, Gao C. The CRISPR-Cas toolbox and gene editing technologies. Mol Cell. 2022;82(2):333–347. DOI: 10.1016/j.molcel.2021.12.002

19. Bharathkumar N, Sunil A, Meera P, Aksah S, Kannan M, Saravanan KM, Anand T. CRISPR/Cas-Based Modifications for Therapeutic Applications: A Review. Mol Biotechnol. 2022;64(4):355–372. DOI: 10.1007/s12033-021-00422-8

20. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012; 337(6096):816–821. DOI: 10.1126/science.1225829

21. Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol. 1987;169:5429–5433. DOI: 10.1128/jb.169.12.5429-5433.1987

22. Mojica FJM, Díez-Villaseñor C, García-Martínez J, Soria E. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol. 2005;60:174–182. DOI: 10.1007/s00239-004-0046-3

23. Svetec Miklenić M, Svetec IK. Palindromes in DNA-A Risk for Genome Stability and Implications in Cancer. Int J Mol Sci. 2021;22(6):2840. DOI: 10.3390/ijms22062840

24. Svoboda P, Di Cara A. Hairpin RNA: a secondary structure of primary importance. Cell Mol Life Sci. 2006;63(7–8):901–908. DOI: 10.1007/s00018-005-5558-5

25. Jiang F, Doudna JA. CRISPR-Cas9 Structures and Mechanisms. Annu Rev Biophys. 2017;46:505–529. DOI: 10.1146/annurev-biophys-062215-010822

26. Levy A, Goren MG, Yosef I, Auster O, Manor M, Amitai G, et al. CRISPR adaptation biases explain preference for acquisition of foreign DNA. Nature. 2015;520(7548):505–510. DOI: 10.1038/nature14302

27. Aviram N, Thornal AN, Zeevi D, Marraffini LA. Different modes of spacer acquisition by the Staphylococcus epidermidis type III-A CRISPR-Cas system. Nucleic Acids Res. 2022;50(3):1661–1672. DOI: 10.1093/nar/gkab1299

28. Heler R, Wright AV, Vucelja M, Bikard D, Doudna JA, Marraffini LA. Mutations in Cas9 Enhance the Rate of Acquisition of Viral Spacer Sequences during the CRISPR-Cas Immune Response. Mol Cell. 2017;65(1):168–175. DOI: 10.1016/j.molcel.2016.11.031

29. McGinn J, Marraffini LA. Molecular mechanisms of CRISPR-Cas spacer acquisition. Nat Rev Microbiol. 2019;17(1):7–12. DOI: 10.1038/s41579-018-0071-7

30. Westra ER, Nilges B, van Erp PB, van der Oost J, Dame RT, Brouns SJ. Cascade-mediated binding and bending of negatively supercoiled DNA. RNA Biol. 2012;9(9):1134–1138. DOI: 10.4161/rna.21410

31. Deng L, Kenchappa CS, Peng X, She Q, Garrett RA. Modulation of CRISPR locus transcription by the repeat-binding protein Cbp1 in Sulfolobus. Nucleic Acids Res. 2012;40(6):2470– 2480. DOI: 10.1093/nar/gkr1111

32. Leenay RT, Maksimchuk KR, Slotkowski RA, Agrawal RN, Gomaa AA, Briner AE, et al. Identifying and Visualizing Functional PAM Diversity across CRISPR-Cas Systems. Mol Cell. 2016;62(1):137–147. DOI: 10.1016/j.molcel.2016.02.031

33. Anders C, Niewoehner O, Duerst A, Jinek M. Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature. 2014;513(7519):569–573. DOI: 10.1038/nature13579

34. Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P, et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell. 2015;163(3):759–771. DOI: 10.1016/j.cell.2015.09.038

35. Yourik P, Fuchs RT, Mabuchi M, Curcuru JL, Robb GB. Staphylococcus aureus Cas9 is a multiple-turnover enzyme. RNA. 2019;25(1):35–44. DOI: 10.1261/rna.067355.118

36. Makarova KS, Wolf YI, Iranzo J, Shmakov SA, Alkhnbashi OS, Brouns SJJ, et al. Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived variants. Nat Rev Microbiol. 2020;18(2):67–83. DOI: 10.1038/s41579-019-0299-x

37. Carte J, Christopher RT, Smith JT, Olson S, Barrangou R, Moineau S, et al. The three major types of CRISPR-Cas systems function independently in CRISPR RNA biogenesis in Streptococcus thermophilus. Mol Microbiol. 2014;93(1):98–112. DOI: 10.1111/mmi.12644

38. Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. Genome engineering using the CRISPR-Cas9 system. Nat Protoc. 2013;8(11):2281–2308. DOI: 10.1038/nprot.2013.143

39. Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, et al. RNA-guided human genome engineering via Cas9. Science. 2013;339(6121):823–826. DOI: 10.1126/science.1232033

40. Jinek M, East A, Cheng A, Lin S, Ma E, Doudna J. RNA-programmed genome editing in human cells. Elife. 2013;2:e00471. DOI: 10.7554/eLife.00471

41. Kleinstiver BP, Prew MS, Tsai SQ, Topkar VV, Nguyen NT, Zheng Z, et al. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature. 2015; 523(7561):481-485. DOI: 10.1038/nature14592

42. Ran FA, Hsu PD, Lin CY, Gootenberg JS, Konermann S, Trevino AE, et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell. 2013;154(6):1380– 1389. DOI: 10.1016/j.cell.2013.08.021

43. Chang HHY, Pannunzio NR, Adachi N, Lieber MR. Non-homologous DNA end joining and alternative pathways to double-strand break repair. Nat Rev Mol Cell Biol. 2017;18(8):495– 506. DOI: 10.1038/nrm.2017.48

44. Yan WX, Mirzazadeh R, Garnerone S, Scott D, Schneider MW, Kallas T, et al. BLISS is a versatile and quantitative method for genome-wide profiling of DNA double-strand breaks. Nat Commun. 2017;8:15058. DOI: 10.1038/ncomms15058

45. Maeder ML, Stefanidakis M, Wilson CJ, Baral R, Barrera LA, Bounoutas GS, et al. Development of a gene-editing approach to restore vision loss in Leber congenital amaurosis type 10. Nat Med. 2019;25(2):229–233. DOI: 10.1038/s41591-018-0327-9

46. Gillmore JD, Gane E, Taubel J, Kao J, Fontana M, Maitland ML, et al. CRISPR-Cas9 In Vivo Gene Editing for Transthyretin Amyloidosis. N Engl J Med. 2021;385(6):493–502. DOI: 10.1056/NEJMoa2107454

47. Nguyêñ GT, Carrington M, Beeler JA, Dean M, Aledort LM, Blatt PM, et al. Phenotypic expressions of CCR5-delta32/delta32 homozygosity. J Acquir Immune Defic Syndr. 1999;22(1):75–82. DOI: 10.1097/00042560-199909010-00010

48. Brown TR. I am the Berlin patient: a personal reflection. AIDS Res Hum Retroviruses. 2015;31(1):2–3. DOI: 10.1089/AID.2014.0224

49. Hütter G, Nowak D, Mossner M, Ganepola S, Müssig A, Allers K, et al. Long-term control of HIV by CCR5 Delta32/Delta32 stem-cell transplantation. N Engl J Med. 2009;360(7):692– 698. DOI: 10.1056/NEJMoa0802905

50. Cannon P, June C. Chemokine receptor 5 knockout strategies. Curr Opin HIV AIDS. 2011;6(1):74–79. DOI: 10.1097/COH.0b013e32834122d7

51. Niu D, Wei HJ, Lin L, George H, Wang T, Lee IH, et al. Inactivation of porcine endogenous retrovirus in pigs using CRISPR-Cas9. Science. 2017;357(6357):1303–1307. DOI: 10.1126/science.aan4187

52. https://www.technologyreview.com/2019/06/12/239014/crispr-pig-organs-are-being-implanted-in-monkeys-to-see-if-theyre-safe-for-humans/

53. Kuehn BM. First Pig-to-Human Heart Transplant Marks a Milestone in Xenotransplantation. Circulation. 2022;145(25):1870–1871. DOI: 10.1161/CIRCULATIONAHA.122.060418

54. Shalem O, Sanjana NE, Hartenian E, Shi X, Scott DA, Mikkelson T, et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science. 2014;343(6166):84–87. DOI: 10.1126/science.1247005

55. Kurata JS, Lin RJ. MicroRNA-focused CRISPR-Cas9 library screen reveals fitness-associated miRNAs. RNA. 2018;24(7):966–981. DOI: 10.1261/rna.066282.118

56. Crowther MD, Dolton G, Legut M, Caillaud ME, Lloyd A, Attaf M, et al. Genome-wide CRISPR-Cas9 screening reveals ubiquitous T cell cancer targeting via the monomorphic MHC class I-related protein MR1. Nat Immunol. 2020;21(2):178–185. DOI: 10.1038/s41590-019-0578-8

57. Bowling S, Sritharan D, Osorio FG, Nguyen M, Cheung P, Rodriguez-Fraticelli A, et al. An Engineered CRISPR-Cas9 Mouse Line for Simultaneous Readout of Lineage Histories and Gene Expression Profiles in Single Cells. Cell. 2020;181(6):1410–1422.e27. DOI: 10.1016/j.cell.2020.04.048

58. Suzuki K, Tsunekawa Y, Hernandez-Benitez R, Wu J, Zhu J, Kim EJ, et al. In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration. Nature. 2016;540(7631):144–149. DOI: 10.1038/nature20565

59. Haber JE. DNA Repair: The Search for Homology. Bioessays. 2018;40(5):e1700229. DOI: 10.1002/bies.201700229

60. Liu M, Rehman S, Tang X, Gu K, Fan Q, Chen D, Ma W. Methodologies for Improving HDR Efficiency. Front Genet. 2019;9:691. DOI: 10.3389/fgene.2018.00691

61. Carlson-Stevermer J, Abdeen AA, Kohlenberg L, Goedland M, Molugu K, Lou M, Saha K. Assembly of CRISPR ribonucleoproteins with biotinylated oligonucleotides via an RNA aptamer for precise gene editing. Nat Commun. 2017;8(1):1711. DOI: 10.1038/s41467-017-01875-9

62. Perales MA, Kebriaei P, Kean LS, Sadelain M. Building a Safer and Faster CAR: Seatbelts, Airbags, and CRISPR. Biol Blood Marrow Transplant. 2018;24(1):27–31. DOI: 10.1016/j.bbmt.2017.10.017

63. Guo C, Ma X, Gao F, Guo Y. Off-target effects in CRISPR/Cas9 gene editing. Front Bioeng Biotechnol. 2023;11:1143157. DOI: 10.3389/fbioe.2023.1143157

64. Liu M, Zhang W, Xin C, Yin J, Shang Y, Ai C, et al. Global detection of DNA repair outcomes induced by CRISPR-Cas9. Nucleic Acids Res. 2021;49(15):8732–8742. DOI: 10.1093/nar/gkab686

65. Gaudelli NM, Komor AC, Rees HA, Packer MS, Badran AH, Bryson DI, Liu DR. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature. 2017;551(7681):464–471. DOI: 10.1038/nature24644

66. Zuo E, Sun Y, Wei W, Yuan T, Ying W, Sun H, et al. Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos. Science. 2019;364(6437):289– 292. DOI: 10.1126/science.aav9973

67. Koblan LW, Doman JL, Wilson C, Levy JM, Tay T, Newby GA, et al. Improving cytidine and adenine base editors by expression optimization and ancestral reconstruction. Nat Biotechnol. 2018;36(9):843–846. DOI: 10.1038/nbt.4172

68. Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW, Levy JM, et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature. 2019;576(7785):149–157. DOI: 10.1038/s41586-019-1711-4

69. Chen PJ, Liu DR. Prime editing for precise and highly versatile genome manipulation. Nat Rev Genet. 2023;24(3):161–177. DOI: 10.1038/s41576-022-00541-1

70. Gilbert LA, Horlbeck MA, Adamson B, Villalta JE, Chen Y, Whitehead EH, et al. GenomeScale CRISPR-Mediated Control of Gene Repression and Activation. Cell. 2014;159(3):647– 661. DOI: 10.1016/j.cell.2014.09.029

71. Nuñez JK, Chen J, Pommier GC, Cogan JZ, Replogle JM, Adriaens C, et al. Genomewide programmable transcriptional memory by CRISPR-based epigenome editing. Cell. 2021;184(9):2503–2519.e17. DOI: 10.1016/j.cell.2021.03.025

72. Wu X, Mao S, Ying Y, Krueger CJ, Chen AK. Progress and Challenges for Live-cell Imaging of Genomic Loci Using CRISPR-based Platforms. Genomics Proteomics Bioinformatics. 2019;17(2):119–128. DOI: 10.1016/j.gpb.2018.10.001

73. Lekomtsev S, Aligianni S, Lapao A, Bürckstümmer T. Efficient generation and reversion of chromosomal translocations using CRISPR/Cas technology. BMC Genomics. 2016;17(1):739. DOI: 10.1186/s12864-016-3084-5

74. Yue M, Ogawa Y. CRISPR/Cas9-mediated modulation of splicing efficiency reveals short splicing isoform of Xist RNA is sufficient to induce X-chromosome inactivation. Nucleic Acids Res. 2018;46(5):e26. DOI: 10.1093/nar/gkx1227

75. Kellner MJ, Koob JG, Gootenberg JS, Abudayyeh OO, Zhang F. SHERLOCK: nucleic acid detection with CRISPR nucleases. Nat Protoc. 2019;14(10):2986–3012. DOI: 10.1038/s41596-019-0210-2

76. Yi W, Li J, Zhu X, Wang X, Fan L, Sun W, et al. CRISPR-assisted detection of RNA-protein interactions in living cells. Nat Methods. 2020;17(7):685–688. DOI: 10.1038/s41592-020-0866-0

77. Fu R, He W, Dou J, Villarreal OD, Bedford E, Wang H, et al. Systematic decomposition of sequence determinants governing CRISPR/Cas9 specificity. Nat Commun. 2022;13(1):474. DOI: 10.1038/s41467-022-28028-x

78. Cradick TJ, Qiu P, Lee CM, Fine EJ, Bao G. COSMID: A Web-based Tool for Identifying and Validating CRISPR/Cas Off-target Sites. Mol Ther Nucleic Acids. 2014;3(12):e214. DOI: 10.1038/mtna.2014.64

79. Karagyaur MN, Rubtsov YP, Vasiliev PA, Tkachuk VA. Practical Recommendations for Improving Efficiency and Accuracy of the CRISPR/Cas9 Genome Editing System. Biochemistry (Mosc). 2018;83(6):629–642. DOI: 10.1134/S0006297918060020

80. Zhang J, Chen L, Zhang J, Wang Y. Drug Inducible CRISPR/Cas Systems. Comput Struct Biotechnol J. 2019;17:1171–1177. DOI: 10.1016/j.csbj.2019.07.015

81. Senturk S, Shirole NH, Nowak DG, Corbo V, Pal D, Vaughan A, et al. Rapid and tunable method to temporally control gene editing based on conditional Cas9 stabilization. Nat Commun. 2017;8:14370. DOI: 10.1038/ncomms14370

82. Xia E, Duan R, Shi F, Seigel KE, Grasemann H, Hu J. Overcoming the Undesirable CRISPR-Cas9 Expression in Gene Correction. Mol Ther Nucleic Acids. 2018;13:699–709. DOI: 10.1016/j.omtn.2018.10.015

83. Kim D, Luk K, Wolfe SA, Kim JS. Evaluating and Enhancing Target Specificity of GeneEditing Nucleases and Deaminases. Annu Rev Biochem. 2019;88:191–220. DOI: 10.1146/annurev-biochem-013118-111730

84. Ghaemi A, Bagheri E, Abnous K, Taghdisi SM, Ramezani M, Alibolandi M. CRISPR-cas9 genome editing delivery systems for targeted cancer therapy. Life Sci. 2021;267:118969. DOI: 10.1016/j.lfs.2020.118969

85. Lindeboom RGH, Vermeulen M, Lehner B, Supek F. The impact of nonsense-mediated mRNA decay on genetic disease, gene editing and cancer immunotherapy. Nat Genet. 2019;51(11):1645–1651. DOI: 10.1038/s41588-019-0517-5

86. Koniali L, Lederer CW, Kleanthous M. Therapy Development by Genome Editing of Hematopoietic Stem Cells. Cells. 2021;10(6):1492. DOI: 10.3390/cells10061492

87. Smits JPH, Meesters LD, Maste BGW, Zhou H, Zeeuwen PLJM, van den Bogaard EH. CRISPR-Cas9-Based Genomic Engineering in Keratinocytes: From Technology to Application. JID Innov. 2021;2(2):100082. DOI: 10.1016/j.xjidi.2021.100082

88. Marangi M, Pistritto G. Innovative Therapeutic Strategies for Cystic Fibrosis: Moving Forward to CRISPR Technique. Front Pharmacol. 2018;9:396. DOI: 10.3389/fphar.2018.00396

89. Harmatz P, Prada CE, Burton BK, Lau H, Kessler CM, Cao L, et al. First-in-human in vivo genome editing via AAV-zinc-finger nucleases for mucopolysaccharidosis I/II and hemophilia B. Mol Ther. 2022;30(12):3587–3600. DOI: 10.1016/j.ymthe.2022.10.010

90. Min YL, Bassel-Duby R, Olson EN. CRISPR Correction of Duchenne Muscular Dystrophy. Annu Rev Med. 2019;70:239–255. DOI: 10.1146/annurev-med-081117-010451

91. Boggio A, Knoppers BM, Almqvist J, Romano CPR. The Human Right to Science and the Regulation of Human Germline Engineering. CRISPR J. 2019;2:134–142. DOI: 10.1089/crispr.2018.0053

92. Karagyaur MN, Efimenko AYu, Makarevich PI, Vasiluev PA, Akopyan ZhA, Bryzgalina EV, Tkachuk VA. Ethical and Legal Aspects of Using Genome Editing Technologies in Medicine (Review). Sovremennye tehnologii v medicine. 2019;11(3):117. DOI: 10.17691/stm2019.11.3.16

93. Shinwari ZK, Tanveer F, Khalil AT. Ethical Issues Regarding CRISPR Mediated Genome Editing. Curr Issues Mol Biol. 2018;26:103–110. DOI: 10.21775/cimb.026.103

94. Greely HT. CRISPR’d babies: human germline genome editing in the ‘He Jiankui affair’. J Law Biosci. 2019;6(1):111–183. DOI: 10.1093/jlb/lsz010

95. Raposo VL. The First Chinese Edited Babies: A Leap of Faith in Science. JBRA Assist Reprod. 2019;23(3):197–199. DOI: 10.5935/1518-0557.20190042

96. Cancellieri S, Zeng J, Lin LY, Tognon M, Nguyen MA, Lin J, et al. Human genetic diversity alters off-target outcomes of therapeutic gene editing. Nat Genet. 2023;55(1):34–43. DOI: 10.1038/s41588-022-01257-y

97. Nahmad AD, Reuveni E, Goldschmidt E, Tenne T, Liberman M, Horovitz-Fried M, et al. Frequent aneuploidy in primary human T cells after CRISPR-Cas9 cleavage. Nat Biotechnol. 2022;40(12):1807–1813. DOI: 10.1038/s41587-022-01377-0

98. Höijer I, Emmanouilidou A, Östlund R, van Schendel R, Bozorgpana S, Tijsterman M, et al. CRISPR-Cas9 induces large structural variants at on-target and off-target sites in vivo that segregate across generations. Nat Commun. 2022;13(1):627. DOI: 10.1038/s41467-022-28244-5

99. Wei X, Nielsen R. CCR5-∆32 is deleterious in the homozygous state in humans. Nat Med. 2019;25(6):909–910. DOI: 10.1038/s41591-019-0459-6

100. Baylis F, Darnovsky M, Hasson K, Krahn TM. Human Germ Line and Heritable Genome Editing: The Global Policy Landscape. CRISPR J. 2020;3(5):365–377. DOI: 10.1089/crispr.2020.0082

101. Grebenshchikova EG. Russia’s stance on human genome editing. Nature. 2019;575(7784):596. DOI: 10.1038/d41586-019-03617-x

102. Редактирование генов и геномов. В 3-х т. Отв. ред. С.М. Закиян, С.П. Медведев, Е.В. Дементьева, Е.А. Покушалов, В.В. Власов. 2-е изд., расш. и доп. Новосибирск: Издательство СО РАН, 2018.

103. Методы редактирования генов и геномов. Отв. ред. С.М. Закиян, С.П. Медведев, Е.В. Дементьева, Е.А. Покушалов, В.В. Власов. Новосибирск: Издательство СО РАН, 2020, 550 стр. ISBN 978-5-7692-1670-1.


Рецензия

Для цитирования:


Карагяур М.Н., Примак А.Л., Джауари С.С., Бозов К.Д., Макусь Ю.В. Технологии редактирования генома и перспективы их применения в биомедицине. Регенерация органов и тканей. 2024;2(1):54-77. https://doi.org/10.60043/2949-5938-2024-1-54-77

For citation:


Karagyaur M.N., Primak A.L., Dzhauari S.S., Bozov K.D., Makus Yu.V. Genome editing technologies and prospects for their use in biomedicine. Регенерация органов и тканей. 2024;2(1):54-77. (In Russ.) https://doi.org/10.60043/2949-5938-2024-1-54-77

Просмотров: 626


ISSN 2949-5938 (Online)